Advertisement

Perovskites as Alternatives to Noble Metals in Automotive Exhaust Abatement: Activation of Oxygen on LaCrO3 and LaMnO3

  • G. PeronEmail author
  • A. Glisenti
Original Paper
  • 42 Downloads

Abstract

In this contribution, perovskitic materials have been tested as substitutes of noble metals in automotive exhaust abatement devices. LaMnO3 and LaCrO3 were the chosen materials. Samples were characterized by means of X-ray diffraction, scanning electron microscopy, BET surface area, temperature programmed reduction and X-ray photoelectron spectroscopy. Reactions tested have been soot oxidation by 10% O2 and 0.5% NO and stoichiometric 1% NO reduction by 1% CO. LaMnO3 has proved to be a good catalyst for oxidation reactions, whereas LaCrO3 is more suitable for reduction reactions. TPR and XPS analysis have shown a greater oxygen exchange capability in LaMnO3 than in LaCrO3, which is less reducible and strongly bonds adsorbed oxygen. Substitution of 20% La in the A-site of the perovskitic lattice with K has increased activity of both catalysts. In the case of LaCrO3, however, this has lead to a slower reaction course. NO reduction test clearly indicates that Cr-containing perovskite is more suitable for reduction reactions, whereas Mn-based materials are a good choice for oxidative applications. This can relate to superficial oxygen properties and bulk oxygen mobility, as shown by XPS and TPR results.

Keywords

Lanthanum chromite Lanthanum manganate Perovskite Soot oxidation NO reduction K-doping 

Notes

Acknowledgements

The research leading to these results has received funding from the European Union’s H2020 Programme under grant agreement 686086 PARTIAL-PGMs. GP gratefully thanks Fondazione Cariparo for financial support.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    WHO Global Ambient Air Quality Database (update 2018). https://www.who.int/airpollution/data/cities/en/. Accessed 12 Nov 2018
  2. 2.
  3. 3.
    Garbujo A, Pacella M, Natile MM, Guiotto M, Fabro J, Canu P, Glisenti A (2017) Appl Catal A 544:94–107CrossRefGoogle Scholar
  4. 4.
    Bedon A, Natile MM, Glisenti A (2017) JACS 37:1049–1058Google Scholar
  5. 5.
    Ura B, Trawczyński J, Kotarba A, Bieniasz W, Illán-Gómez MJ, Bueno-López A, López-Suárez FE (2011) Appl Catal B 101:169–175CrossRefGoogle Scholar
  6. 6.
    Querini CA, Cornaglia LM, Ulla MA, Miró EE (1999) Appl Catal B 20:165–177CrossRefGoogle Scholar
  7. 7.
    Teraoka Y, Kanada K, Kagawa S (2001) Appl Catal B 34:73–78CrossRefGoogle Scholar
  8. 8.
    Gálvez ME, Ascaso S, Stelmachowski P, Legutko P, Kotarba A, Moliner R, Lázaro MJ (2014) Appl Catal B 152–153:88–98CrossRefGoogle Scholar
  9. 9.
    Liu J, Zhao Z, Xu CM, Duan AJ (2008) Appl Catal B 78:61–72CrossRefGoogle Scholar
  10. 10.
    Mul G, Neeft JPA, Kapteijn F, Makkee M, Moulijn JA (1995) Appl Catal B 6:339–352CrossRefGoogle Scholar
  11. 11.
    Ifrah S, Kaddouri A, Gelin P, Bergeret G (2007) Catal Commun 8:2257–2262CrossRefGoogle Scholar
  12. 12.
    Fino D, Russo N, Saracco G, Specchia V (2003) J Catal 217:367–375CrossRefGoogle Scholar
  13. 13.
    Russo N, Fino D, Saracco G, Specchia V (2005) J Catal 229:459–469CrossRefGoogle Scholar
  14. 14.
    Ponce S, Peña MA, Fierro JLG (2000) Appl Catal B 24:193–205CrossRefGoogle Scholar
  15. 15.
    Howng WY, Thorn RJ (1980) J Phys Chem of Solids 41:75–81CrossRefGoogle Scholar
  16. 16.
    Tejuca LG, Fierro JLG, Tascón JMD (1989) Adv Catal 36:237–328Google Scholar
  17. 17.
    Tabata K, Hirano Y, Suzuki E (1998) Appl Catal A 170:245–254CrossRefGoogle Scholar
  18. 18.
    Merino NA, Barbero BP, Eloy P, Cadús LE (2006) Appl Surf Sci 253:1489–1493CrossRefGoogle Scholar
  19. 19.
    Christensen JM, Grunwaldt J-D, Jensen AD (2016) Appl Catal B 188:235–244CrossRefGoogle Scholar
  20. 20.
    Rida K, Benabbas A, Bouremmad F, Peña MA, Sastre E, Martínez-Arias A (2008) Appl Catal B 84:457–467CrossRefGoogle Scholar
  21. 21.
    Fierro JLG, Gonzaléz Tejuca L (1984) J Catal 87:126–135CrossRefGoogle Scholar
  22. 22.
    Beckers J, Drost R, van Zandvoort I, Collignon PF, Rothenberg (2008) Chem Eur J Chem Phys 9:1062–1068CrossRefGoogle Scholar
  23. 23.
    Vert VB, Melo FV, Navarrete L, Serra JM (2012) Appl Catal B 115–116:346–335Google Scholar
  24. 24.
    Álvarez-Galván MC, de la Peña O’Shea VA, Arzamendi G, Pawelec B, Gandía LM, Fierro JLG (2009) Appl Catal B 92:445–453CrossRefGoogle Scholar
  25. 25.
    Fierro JLG, Tascón JMD, González Tejuca L (1984) J Catal 89:209–216CrossRefGoogle Scholar
  26. 26.
    Shen M, Zhao Z, Chen J, Su Y, Wang J, Wang X (2013) J Rare Earths 31:119–123CrossRefGoogle Scholar
  27. 27.
    Sedykh V, Shekhtman VS, Zverkova II, Dubovitskii AV, Kulakov VI (2006) Phys C Superconduct 433:189–194CrossRefGoogle Scholar
  28. 28.
    Nagai Y, Hirabayashi T, Dohmae K, Takagi N, Minami T, Shinjoh H, Matsumoto S (2006) J Catal 242:103–106CrossRefGoogle Scholar
  29. 29.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981–2018CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of PadovaPaduaItaly
  2. 2.CNR-ICMATEPaduaItaly

Personalised recommendations