Advertisement

Synthesis and Development of Four Way Catalysts Starting from Critical Raw Material Free Perovskites: Influence of Doping and Synthesis Conditions

  • A. De Zanet
  • G. PeronEmail author
  • M. M. Natile
  • A. Vittadini
  • A. GlisentiEmail author
Original Paper

Abstract

In this contribution we evaluated the effect of synthesis procedure (complexing molecule, calcination temperature) and doping on the properties and catalytic performance of SrTiO3. Focusing on preparation we compared two complexants: citric acid and glycine calcinating the catalysts at 700 and 850 °C. Moreover, we doped the perovskite substituting Sr with K and Ti with Mn. The obtained catalysts have been characterized by X-Ray diffraction, X-Ray photoelectron spectroscopy, BET, scanning electron microscopy, energy dispersive X-Ray analysis, temperature programmed reduction. To evaluate the effect of upon mentioned aspects on the catalytic activity, the following reactions have been considered: CO oxidation, CO assisted NO reduction, soot oxidation. The obtained results underline the deep effect of dopants, with particular reference to Mn, on the catalytic performance.

Keywords

Titanates Soot oxidation K,Mn-doping Glycine Citric acid 

Notes

Acknowledgements

The research leading to these results has received funding from the European Union’s H2020 Programme under grant agreement 686086 PARTIAL-PGMs.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11244_2018_1119_MOESM1_ESM.docx (785 kb)
Supplementary material 1 (DOCX 784 KB)

References

  1. 1.
    WHO Global Ambient Air Quality Database (update 2018) https://www.who.int/airpollution/data/cities/en/. Accessed 11 Dec 2018
  2. 2.
    Twigg MV (2005) Controlling automotive exhaust emissions: successes and underlying science. Phil Trans R Soc A 363:1013–1033CrossRefGoogle Scholar
  3. 3.
    Tanaka H, Misono M (2001) Advances in designing perovskite catalysts. Curr Opin Solid State Mater Sci 5:381–387CrossRefGoogle Scholar
  4. 4.
    Glisenti A, Natile MM, Carlotto S, Vittadini A (2014) Co- and Cu-doped titanates: toward a new generation of catalytic converters. Catal Lett 144:1466–1471CrossRefGoogle Scholar
  5. 5.
    Carlotto S, Natile MM, Glisenti A, Vittadini A (2016) Adsorption of CO and formation of carbonates at steps of pure and Co-doped SrTiO3 surfaces by DFT calculations. Appl Surf Sci 364:522–527CrossRefGoogle Scholar
  6. 6.
    Carlotto S, Natile MM, Glisenti A, Vittadini A (2015) Adsorption of small molecules at the cobalt-doped SrTiO3(001) surface: a first-principles investigation. Surf Sci 633:68–76CrossRefGoogle Scholar
  7. 7.
    Carlotto S, Natile MM, Glisenti A, Vittadini A (2018) Catalytic mechanisms of NO reduction in a CO–NO atmosphere at Co- and Cu-doped SrTiO3(100) surfaces. J Phys Chem C 122:449–454CrossRefGoogle Scholar
  8. 8.
    Hong S-S, Lee G-D (2006) Catalytic removal of diesel soot participates over LaMnO3 perovskite-type oxides. Stud Surf Sci Catal 159:261–264CrossRefGoogle Scholar
  9. 9.
    Bialobook B, Trawczynski J, Rzadki T, Mista W, Zawadzki M (2006) Catalytic combustion of soot over alkali doped SrTiO3. Catal Today 119:278–285CrossRefGoogle Scholar
  10. 10.
    Lopéz-Suarez FE, Bueno-Lopéz A, Illan-Goméz MJ, Ura B, Trawczynski J (2009) Potassium stability in soot combustion perovskite catalysts. Top Catal 52:2097–2100CrossRefGoogle Scholar
  11. 11.
    Lopéz-Suarez FE, Bueno-Lopéz A, Illan-Goméz MJ, Trawczynski J (2014) Potassium–copper perovskite catalysts for mild temperature diesel soot combustion. Appl Catal A 485:214CrossRefGoogle Scholar
  12. 12.
    Ura B, Trawczyński J, Zawadzki M, Illan Gomez MJ, Bueno López A, López Suarez FE (2011) Sr1-xKxTiO3 catalysts for diesel soot combustion. Catal Today 176:169–172CrossRefGoogle Scholar
  13. 13.
    Wang H, Liu J, Zhao Z, Wei Y, Xu C (2012) Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOx from diesel engine exhaust. Catal Today 184:288–300CrossRefGoogle Scholar
  14. 14.
    Suarez-Vaquez SI, Gil S, Garcia-Vargas JM, Cruz-Lopéz A, Giroir-Fendler A (2018) Catalytic oxidation of toluene by SrTi1-XBXO3(B=Cu and Mn) withdendritic morphology synthesized by one pot hydrothermal route. Appl Catal B 223:201–208CrossRefGoogle Scholar
  15. 15.
    Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12Google Scholar
  16. 16.
  17. 17.
    Shirley DA (1972) High-resolution X-Ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714CrossRefGoogle Scholar
  18. 18.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. In: Chastain J (ed) Physical electronics. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  19. 19.
    Briggs D, Riviere JC (1983) In: Briggs D, Seah MP (eds) Practical surface analysis. Wiley, New YorkGoogle Scholar
  20. 20.
    Takehira K, Shishido T, Kondo M (2002) Partial oxidation of CH4 over Ni/SrTiO3 catalysts prepared by a solid-phase crystallization method. J Catal 207:307–316CrossRefGoogle Scholar
  21. 21.
    Álvarez-Galván MC, de la Peña O’Shea VA, Arzamendi G, Pawelec B, Gandía LM, Fierro JLG (2009) Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl Catal B 92:445–453CrossRefGoogle Scholar
  22. 22.
    Voorhoeve RJH, Johnson DW Jr, Remeika JP, Gallagher PK (1977) Perovskite oxides: materials science in catalysis. Science 195:827–833CrossRefGoogle Scholar
  23. 23.
    Tejuca LG, Fierro JLG, Tascón JMD (1989) Structure and reactivity of perovskite-type oxides. Adv Catal 36(C):237–328Google Scholar
  24. 24.
    Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3:41–59CrossRefGoogle Scholar
  25. 25.
    Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39:2247–2268CrossRefGoogle Scholar
  26. 26.
    Liang H, Mou L, Zhang H, Li S, Yao C, Yu X (2017) Sulfur resistance and soot combustion for La0.8K0.2Co1–yMnyO3 catalyst. Catal Today 281:477–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of PadovaPaduaItaly
  2. 2.CNR-ICMATEPaduaItaly

Personalised recommendations