Oxidation State and Dielectric Properties of Ceria-Based Catalysts by Complementary Microwave Cavity Perturbation and X-Ray Absorption Spectroscopy Measurements

  • C. Steiner
  • A. M. Gänzler
  • M. Zehentbauer
  • G. Hagen
  • M. Casapu
  • S. Müller
  • J.-D. Grunwaldt
  • R. Moos
Original Paper


The three-way catalytic converter (TWC) has become an integral part of the modern exhaust gas aftertreatment for gasoline engines. Some years ago, radio frequency technology has been successfully tested for monitoring and controlling ceria based TWC oxygen storage by contactless measuring the dielectric catalyst properties inside a cavity resonator. Applying the cavity perturbation method, we present results on CeO2, the oxygen storage component of three-way catalysts, and on differently prepared Pt–ceria model catalysts and combine it with in situ X-ray absorption spectroscopic (XAS) measurements conducted at the Ce L3-edge. The dielectric properties of the oxidized and reduced Pt–ceria and pure ceria powders were determined at 1.2 GHz between 250 and 550 °C. As the experiments show, the reduction of the material changes both, the polarization and the occurring dielectric losses. The complementary in situ XAS measurements, which allow monitoring variations in the redox state of ceria, gave a precise evaluation of the ceria reduction and oxidation. In addition, a substantial improvement of the low-temperature reducibility of ceria in the presence of Pt was demonstrated by both measurement techniques, in agreement with earlier studies. Furthermore, time resolved XAS data obtained during reducing/oxidizing cycles at 250 °C and 350 °C unraveled the faster and more pronounced reduction of ceria at higher temperature. Both methods proved to be valuable methods to provide insight into the oxygen storage and release process of ceria based materials, and capable to discriminate the impact of the noble metal or the ceria surface area in great detail, even under dynamic conditions, which is highly relevant for studying the function of state-of-the art three-way catalysis and giving input for OSC modeling studies.


Ceria Oxygen storage capacity (OSC) Three-way catalyst (TWC) Exhaust gas aftertreatment Cavity perturbation Microwave X-ray absorption spectroscopy 



J.-D. Grunwaldt thanks the German Federal Ministry for Economic Affairs and Energy (BMWi: 19U15014B) for financial support of the ORCA project within the DEUFRAKO program as well as the Ministry for Science, Research and Art of Baden-Württemberg for funding for MEMO-SENS-CAT. Ralf Moos acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG Grant MO 1060/29-1). The group of Prof. M. Türk (ITTK, KIT) is acknowledged for the support provided to SM during the preparation of the SFRD catalyst. The SLS is acknowledged for providing beamtime. We thank the following people for their support: Angela Beilmann (BET, KIT), Florian Maurer, Abhijeet Gaur, Dmitry Doronkin (beamtime support, ITCP, KIT), Heike Störmer and Radian Popescu (electron microscopy, LEM, KIT) and Thomas Bergfeldt (elemental analysis, IAM, KIT), as well as Maarten Nachtegaal, Olga Safonova and Urs Vogelsang (SuperXAS beamline, SLS, PSI). Additionally, we also thank Ingo Horn (Institute for Mineralogy, Leibniz University Hannover) for the support on LA-ICP-MS.


  1. 1.
    Winkler M, Grimm J, Lenga H, Min BH (2014) In: Liebl J (ed) Internationaler Motorenkongress 2014. Springer, WiesbadenGoogle Scholar
  2. 2.
    Deutschmann O, Grunwaldt J-D (2014) Abgasnachbehandlung in mobilen Systemen: Stand der Technik, Herausforderungen und Perspektiven. Chem Ing Tech 85:595–617. CrossRefGoogle Scholar
  3. 3.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev: Sci Eng 38:439–520. CrossRefGoogle Scholar
  4. 4.
    Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. CrossRefPubMedGoogle Scholar
  5. 5.
    Odendall B (2016) Katalysatoreigenschaften für Diagnostizierbarkeit. MTZ 77:28–35Google Scholar
  6. 6.
    Reif K (2015) Ottomotor-Management im Überblick. Springer, WiesbadenCrossRefGoogle Scholar
  7. 7.
    Yamamoto T, Suzuki A, Nagai Y, Tanabe T, Dong F, Inada Y, Nomura M, Tada M, Iwasawa Y (2007) Origin and dynamics of oxygen storage/release in a Pt/ordered CeO2–ZrO2 catalyst studied by time-resolved XAFS analysis. Angew Chem Int Ed 46:9253–9256. CrossRefGoogle Scholar
  8. 8.
    Moos R, Wedemann M, Spörl M, Reiß S, Fischerauer G (2009) Direct catalyst monitoring by electrical means: an overview on promising novel principles. Top Catal 52:2035–2040. CrossRefGoogle Scholar
  9. 9.
    Moos R, Beulertz G, Reiß S, Hagen G, Votsmeier M, Fischerauer G, Gieshoff J (2013) Overview of the microwave-based automotive catalyst state diagnosis. Top Catal 55:358–364. CrossRefGoogle Scholar
  10. 10.
    Beulertz G, Herbst F, Hagen G, Fritsch M, Gieshoff J, Moos R (2013) Microwave cavity perturbation as a tool for laboratory in situ measurements of the oxidation state of three way catalysts. Top Catal 56:405–409. CrossRefGoogle Scholar
  11. 11.
    Reiß S, Wedemann M, Spörl M, Fischerauer G, Moos R (2011) Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts. Sens Lett 9:316–320. CrossRefGoogle Scholar
  12. 12.
    Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method. Chem Eng Technol 34:791–796. CrossRefGoogle Scholar
  13. 13.
    Rauch D, Kubinski D, Simon U, Moos R (2014) Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sens Actuators B 205:88–93. CrossRefGoogle Scholar
  14. 14.
    Rauch D, Kubinski D, Cavataio G, Upadhyay D (2015) Ammonia loading detection of zeolite SCR catalysts using a radio frequency based method. SAE Int J Engines 8:1126–1135. CrossRefGoogle Scholar
  15. 15.
    Sappok A, Parks J, Prikhodko V (2010) Loading and regeneration analysis of a diesel particulate filter with a radio frequency-based sensor. SAE Technical Paper.
  16. 16.
    Feulner M, Hagen G, Moos R, Piontkowski A, Müller A, Fischerauer G, Brüggemann D (2013) In-operation monitoring of the soot load of diesel particulate filters: initial tests. Top Catal 56:483–488. CrossRefGoogle Scholar
  17. 17.
    Dietrich M, Rauch D, Porch A, Moos R (2014) A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests. Sensors 14:16856–16868. CrossRefPubMedGoogle Scholar
  18. 18.
    Dietrich M, Rauch D, Simon U, Porch A, Moos R (2015) Ammonia storage studies on H-ZSM-5 zeolites by microwave cavity perturbation: correlation of dielectric properties with ammonia storage. J Sens Sens Syst 4:263–269. CrossRefGoogle Scholar
  19. 19.
    Rauch D, Dietrich M, Simons T, Simon U, Porch A, Moos R (2017) Microwave cavity perturbation studies on H-form and Cu ion-exchanged SCR catalyst materials: correlation of ammonia storage and dielectric properties. Top Catal 60:243–249. CrossRefGoogle Scholar
  20. 20.
    Farra R, Garcia-Melchor M, Eichelbaum M, Hashagen M, Frandsen W, Allan J, Girgsdies F, Szentmiklósi L, López N, Teschner D (2013) Promoted ceria: a structural, catalytic, and computational study. ACS Catal 3(10):2256–2268. CrossRefGoogle Scholar
  21. 21.
    Hayles J, Bao H (2015) The reduction and oxidation of ceria: a natural abundance triple oxygen isotope perspective. Geochim Cosmochim Acta 159:220–230. CrossRefGoogle Scholar
  22. 22.
    Xiong YP, Kishimoto H, Yamaji K, Yoshinaga M, Horita T, Brito ME, Yokokawa H (2011) Electronic conductivity of pure ceria. Sol State Ion 192:476–479. CrossRefGoogle Scholar
  23. 23.
    Marrocchelli D, Bishop SR, Tuller HL, Yildiz B (2012) Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia studies. Adv Funct Mater 22:1958–1965. CrossRefGoogle Scholar
  24. 24.
    Tuller HL, Nowick AS (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38:859–867. CrossRefGoogle Scholar
  25. 25.
    Plata JJ, Máquez AM, Fdez J (2013) Electron mobility via polaron hopping in bulk ceria: a first-principles stud. J Phys Chem 28:14502–14509. CrossRefGoogle Scholar
  26. 26.
    Golunski SE, Hatcher HA, Rajaram RR, Truex TJ (1995) Origins of low-temperature three-way activity in Pt/CeO2. Appl Catal B 5(4):367–376CrossRefGoogle Scholar
  27. 27.
    Lin W, Herzing AA, Kiely CJ, Wachs E (2008) Probing metal-support interactions under oxidizing and reducing conditions: in situ Raman and infrared spectroscopic and scanning transmission electron microscopic-X-ray energy dispersive spectroscopic investigation of supported platinum catalyst. J Phys Chem C 112(15):5942–5951. CrossRefGoogle Scholar
  28. 28.
    Gänzler AM, Casapu M, Maurer F, Störmer H, Gerthsen D, Ferré G, Vernoux P, Bornmann B, Frahm R, Murzin V, Nachtegaal M, Votsmeier M, Grunwaldt J-D (2018) Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal 8:4800–4811. CrossRefGoogle Scholar
  29. 29.
    Gänzler AM, Casapu M, Boubnov A, Müller S, Conrad S, Lichtenberg H, Frahm R, Grunwaldt J-D (2015) Operando spatially and time-resolved X-ray absorption spectroscopy and infrared thermography during oscillatory CO oxidation. J Catal 328:216–224. CrossRefGoogle Scholar
  30. 30.
    Gänzler AM, Casapu M, Vernoux P, Loridant S, Cadete Santos Aires FJ, Epicier T, Betz B, Hoyer R, Grunwaldt J-D (2017) Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew Chem 56(42):13078–13082. CrossRefGoogle Scholar
  31. 31.
    Kopelent R, van Bokhoven JA, Szlachetko J, Edebeli J, Paun C, Nachtegaal M, Safonova OV (2015) Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew Chem 54(30):8728–8731CrossRefGoogle Scholar
  32. 32.
    Benzi F, Sheppard TL, Doronkin DE, Meira DM, Gänzler AM, Baier S, Grunwaldt J-D (2017) Transient structural and catalytic behavior of Pt-particles probed by operando spectroscopy during a realistic driving cycle. Catal Sci Technol 7:3999–4006. CrossRefGoogle Scholar
  33. 33.
    Tepluchin M, Casapu M, Boubnov A, Lichtenberg H, Wang D, Kureti S, Grunwaldt J-D (2014) Fe and Mn-based catalysts supported on γ-Al2O3 for CO oxidation under O2-rich conditions. ChemCatChem 6(6):1763–1773CrossRefGoogle Scholar
  34. 34.
    Wolff S, Crone M, Muller T, Enders M, Bräse S, Türk M (2014) Preparation of supported Pt nanoparticles by supercritical fluid reactive deposition: Influence of precursor, substrate and pressure on product properties. J Supercrit Fluids 95:588–596. CrossRefGoogle Scholar
  35. 35.
    Garrido GI, Patcas FC, Upper G, Türk M, Yilmaz S, Kraushaar-Czarnetzi B (2008) Supercritical deposition of Pt on SnO2-coated Al2O3 foams: phase behavior and catalytic performance. Appl Catal A 338(1–2):58–65. CrossRefGoogle Scholar
  36. 36.
    Land S, Türk M, Kraushaar-Czarnetzki B (2011) Novel PtCuO/CeO2/α-Al2O3 sponge catalysts for the preferential oxidation of CO (PROX) prepared by means of supercritical fluid reactive deposition (SFRD). J Catal 286:78–87. CrossRefGoogle Scholar
  37. 37.
    Aggarwal V, Reichenbach LF, Enders M, Muller T, Wolff S, Crone M, Türk M, Bräse S (2013) Influence of perflourinated end groups on the SFRD of [Pt(cod)Me(CnF2n+1)] onto porous Al2O3 in CO2 under reductive conditions. Chem Eur J 19(38):12794–12799. CrossRefPubMedGoogle Scholar
  38. 38.
    Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2(8):1324–1347 CrossRefPubMedGoogle Scholar
  39. 39.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. CrossRefGoogle Scholar
  40. 40.
    Albrecht M, Derrey IT, Horn I, Schuth S, Weyer S (2014) Quantification of trace element contents in frozen fluid inclusions by UV-fs-LS-ICP-MS analysis. J Anal At Spectrom 29:1034–1041. CrossRefGoogle Scholar
  41. 41.
    Chen L, Ong CK, Neo CP, Varadan VV, Varadan VK (2005) Microwave electronics: measurement and materials characterization. Wiley, Chichester. CrossRefGoogle Scholar
  42. 42.
    Pozar DM (2012) Microwave engineering. Wiley, HobokenGoogle Scholar
  43. 43.
    Leong K, Mazierska J (2002) Precise measurements of the Q factor of dielectric resonators in the transmission mode—accounting for noise, crosstalk, delay of uncalibrated lines, coupling loss, and coupling reactance. IEEE Trans Microw Theory Tech 50:2115–2127. CrossRefGoogle Scholar
  44. 44.
    Grunwaldt J-D, Caravati M, Hannemann S, Baiker A (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6:3037–3047. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Steiner
    • 1
  • A. M. Gänzler
    • 2
  • M. Zehentbauer
    • 1
  • G. Hagen
    • 1
  • M. Casapu
    • 1
  • S. Müller
    • 2
  • J.-D. Grunwaldt
    • 2
  • R. Moos
    • 1
  1. 1.Department of Functional Materials, Bayreuth Engine Research Center (BERC)University of BayreuthBayreuthGermany
  2. 2.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations