Advertisement

Storage and Oxidation of Oxygen-Free and Oxygenated Hydrocarbons on a Pt–Pd Series Production Oxidation Catalyst

  • Bernd Wolkenar
  • Simon Schönebaum
  • Peter Mauermann
  • Peter Dittmann
  • Stefan Pischinger
  • Ulrich Simon
Original Paper
  • 41 Downloads

Abstract

Within the Research Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, novel fuels from biomass for internal combustion engines are investigated. The new fuels tend to soot less, which allows to increase exhaust gas recirculation for reduction of nitrogen oxides (NOx) emissions. This increases the emissions of unburnt hydrocarbons (HC), while the composition of the HC emissions changes because of the changed fuel composition. The impact of 16 different oxygen-free and oxygenated hydrocarbons (1-octanol, di-n-butyl ether (DNBE), 2-butanone and ethanol as examples for bio-derived fuels; toluene and n-heptane as examples for conventional fuels’ components; propane, propene, ethane, ethene, ethyne, methane, n-butane, isobutane, n-pentane and 2-propanol as HC known to be in exhaust gases) on a series production Pt–Pd/Al2O3 oxidation catalyst on a cordierite substrate has been investigated regarding adsorption and temperature programmed oxidation (TPO). In general, due to higher polarity oxygenated HC are stronger adsorbed than oxygen-free ones. For 1-octanol, an extraordinary high adsorption could be observed associated with vigorous exothermal oxidation reaction during TPO. Additionally, the temperature programmed desorption of 1-octanol and ethanol has been investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (TP-DRIFTS). Adsorbed alcohol species as well as oxidized products were demonstrated to be present.

Keywords

Oxygenated hydrocarbons Pt–Pd/Al2O3 Adsorption Temperature programmed oxidation DRIFTS Alternative fuels 

Notes

Acknowledgements

This study was conducted as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative of the German Federal and State Governments to promote science and research at German universities.

Supplementary material

11244_2018_1109_MOESM1_ESM.xlsx (21 kb)
Supplementary material 1 (XLSX 21 KB)

References

  1. 1.
    Pischinger S, Hoppe F, Krieck M et al (2016) Fuel design for future combustion engines: a view from the cluster “Tailor-Made Fuels from Biomass”. In: Lenz HP (ed) 37th International Vienna Motor Symposium 28–29 April, 2016: organized by the Austrian Society of Automotive Engineers (ÖVK) and the Institute for Powertrains and Automotive Technology, Vienna University of Technology; presented by Univ.-Prof. Dr. Hans Peter Lenz (VDI), vol 799, pp 224–252Google Scholar
  2. 2.
    Hoppe F, Burke U, Thewes M et al (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117.  https://doi.org/10.1016/j.fuel.2015.11.039 CrossRefGoogle Scholar
  3. 3.
    Heuser B, Mauermann P, Wankhade R et al (2015) Combustion and emission behavior of linear C8-oxygenates. Int J Engine Res 16(5):627–638.  https://doi.org/10.1177/1468087415594951 CrossRefGoogle Scholar
  4. 4.
    Adomeit P, Scharf J, Thewes M et al (2017) Extreme lean gasoline technology—best efficiency and lowest emission powertrains. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017: Mit Konferenzen Nfz-Motorentechnologie und Neue Kraftstoffe. Springer Fachmedien Wiesbaden, Wiesbaden, pp 101–122CrossRefGoogle Scholar
  5. 5.
    Wunsch R, Hohner P, Schön C et al (2016) Advanced exhaust gas aftertreatment system for gasoline engines to fulfill LEV III/Tier 3 legislation. In: Zellbeck H (ed) 8th Emission Control 2016: 2nd–3rd June 2016 in Dresden, GermanyGoogle Scholar
  6. 6.
    Philipp S, Hoyer R, Adam F et al (2013) Exhaust gas aftertreatment for lean gasoline direct injection engines—potential for future applications. In: SAE 2013 World Congress & Exhibition, SAE Paper 2013-01-1299. SAE International, 400 Commonwealth Drive, Warrendale, PA, United StatesGoogle Scholar
  7. 7.
    McCabe RW, Mitchell PJ (1984) Reactions of ethanol and acetaldehyde over noble metal and metal oxide catalysts. Ind Eng Chem Prod Res Dev 23(2):196–202.  https://doi.org/10.1021/i300014a003 CrossRefGoogle Scholar
  8. 8.
    Cordi EM, Falconer JL (1996) Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts. J Catal 162(1):104–117.  https://doi.org/10.1006/jcat.1996.0264 CrossRefGoogle Scholar
  9. 9.
    Kwak JH, Lee J, Szanyi J et al (2016) Modification of the acid/base properties of γ-Al2O3 by oxide additives: an ethanol TPD investigation. Catal Today 265:240–244.  https://doi.org/10.1016/j.cattod.2015.07.042 CrossRefGoogle Scholar
  10. 10.
    Burgos N, Paulis M, Mirari Antxustegi M et al (2002) Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Appl Catal B 38(4):251–258.  https://doi.org/10.1016/S0926-3373(01)00294-6 CrossRefGoogle Scholar
  11. 11.
    de Mello LF, Noronha FB, Schmal M (2003) NO reduction with ethanol on Pd–Mo/Al2O3 catalysts. J Catal 220(2):358–371.  https://doi.org/10.1016/S0021-9517(03)00272-0 CrossRefGoogle Scholar
  12. 12.
    Avgouropoulos G, Oikonomopoulos E, Kanistras D et al (2006) Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Appl Catal B 65(1–2):62–69.  https://doi.org/10.1016/j.apcatb.2005.12.016 CrossRefGoogle Scholar
  13. 13.
    Paulis M, Gandía LM, Gil A et al (2000) Influence of the surface adsorption–desorption processes on the ignition curves of volatile organic compounds (VOCs) complete oxidation over supported catalysts. Appl Catal B 26(1):37–46.  https://doi.org/10.1016/S0926-3373(00)00109-0 CrossRefGoogle Scholar
  14. 14.
    Kim SC, Shim WG (2009) Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds. Appl Catal B 92(3–4):429–436.  https://doi.org/10.1016/j.apcatb.2009.09.001 CrossRefGoogle Scholar
  15. 15.
    Benard S, Ousmane M, Retailleau L et al (2009) Catalytic removal of propene and toluene in air over noble metal catalyst. Can J Civil Eng 36(12):1935–1945.  https://doi.org/10.1139/L09-135 CrossRefGoogle Scholar
  16. 16.
    Patterson MJ, Angove DE, Cant NW (2000) The effect of carbon monoxide on the oxidation of four C6 to C8 hydrocarbons over platinum, palladium and rhodium. Appl Catal B 26(1):47–57.  https://doi.org/10.1016/S0926-3373(00)00110-7 CrossRefGoogle Scholar
  17. 17.
    Paulis M, Peyrard H, Montes M (2001) Influence of chlorine on the activity and stability of Pt/Al2O3 catalysts in the complete oxidation of toluene. J Catal 199(1):30–40.  https://doi.org/10.1006/jcat.2000.3146 CrossRefGoogle Scholar
  18. 18.
    Radić N, Grbić B, Terlecki-Baričeviç A (2004) Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts. Appl Catal B 50(3):153–159.  https://doi.org/10.1016/j.apcatb.2004.01.011 CrossRefGoogle Scholar
  19. 19.
    Tahir SF, Koh CA (1999) Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere 38(9):2109–2116.  https://doi.org/10.1016/S0045-6535(98)00420-2 CrossRefGoogle Scholar
  20. 20.
    Haneda M, Watanabe T, Kamiuchi N et al (2013) Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl Catal B 142–143:8–14.  https://doi.org/10.1016/j.apcatb.2013.04.055 CrossRefGoogle Scholar
  21. 21.
    Hazlett MJ, Moses-Debusk M, Parks JE et al (2017) Kinetic and mechanistic study of bimetallic Pt–Pd/Al2O3 catalysts for CO and C3H6 oxidation. Appl Catal B 202:404–417.  https://doi.org/10.1016/j.apcatb.2016.09.034 CrossRefGoogle Scholar
  22. 22.
    Diehl F, Barbier J, Duprez D et al (2010) Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3: influence of the structure of the molecule on its reactivity. Appl Catal B 95(3–4):217–227.  https://doi.org/10.1016/j.apcatb.2009.12.026 CrossRefGoogle Scholar
  23. 23.
    Arzamendi G, Ferrero R, Pierna ÁR et al (2007) Kinetics of methyl ethyl ketone combustion in air at low concentrations over a commercial Pt/Al2O3 catalyst. Ind Eng Chem Res 46(26):9037–9044.  https://doi.org/10.1021/ie071156b CrossRefGoogle Scholar
  24. 24.
    Noronha FB, Aranda DAG, Ordine AP et al (2000) The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation. Catal Today 57(3–4):275–282.  https://doi.org/10.1016/S0920-5861(99)00337-5 CrossRefGoogle Scholar
  25. 25.
    Tiernan MJ, Finlayson OE (1998) Effects of ceria on the combustion activity and surface properties of Pt/Al2O3 catalysts. Appl Catal B 19(1):23–35.  https://doi.org/10.1016/S0926-3373(98)00055-1 CrossRefGoogle Scholar
  26. 26.
    Miller JB, Malatpure M (2015) Pd catalysts for total oxidation of methane: support effects. Appl Catal A 495:54–62.  https://doi.org/10.1016/j.apcata.2015.01.044 CrossRefGoogle Scholar
  27. 27.
    Mowery DL, Graboski MS, Ohno TR et al (1999) Deactivation of PdO–Al2O3 oxidation catalyst in lean-burn natural gas engine exhaust: aged catalyst characterization and studies of poisoning by H2O and SO2. Appl Catal B 21(3):157–169.  https://doi.org/10.1016/S0926-3373(99)00017-X CrossRefGoogle Scholar
  28. 28.
    Chen P, Schönebaum S, Simons T et al (2015) Correlating the integral sensing properties of zeolites with molecular processes by combining broadband impedance and DRIFT spectroscopy: a new approach for bridging the scales. Sensors 15(11):28915–28941.  https://doi.org/10.3390/s151128915 CrossRefPubMedGoogle Scholar
  29. 29.
    Goss K-U, Schwarzenbach RP (2002) Adsorption of a diverse set of organic vapors on quartz, CaCO3, and alpha-Al2O3 at different relative humidities. J Colloid Interface Sci 252(1):31–41.  https://doi.org/10.1006/jcis.2002.8447 CrossRefPubMedGoogle Scholar
  30. 30.
    Schmal M, Cesar DV, Souza MMVM et al (2011) Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2-partial oxidation of ethanol. Can J Chem Eng 89(5):1166–1175.  https://doi.org/10.1002/cjce.20597 CrossRefGoogle Scholar
  31. 31.
    Raskó J, Kiss J (2005) Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl Catal A 287(2):252–260.  https://doi.org/10.1016/j.apcata.2005.04.003 CrossRefGoogle Scholar
  32. 32.
    Greenler RG (1962) Infrared study of the adsorption of methanol and ethanol on aluminum oxide. J Chem Phys 37(9):2094–2100.  https://doi.org/10.1063/1.1733430 CrossRefGoogle Scholar
  33. 33.
    Liu X (2008) DRIFTS study of surface of γ-alumina and its dehydroxylation. J Phys Chem C 112(13):5066–5073.  https://doi.org/10.1021/jp711901s CrossRefGoogle Scholar
  34. 34.
    Stein SE, The Coblentz Society, Inc (1997) Evaluated infrared reference spectra. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook: NIST Standard Reference Database, 69th edn. National Institute of Standards and Technology, Gaithersburg.  https://doi.org/10.18434/T4D303. Accessed 11 Jun 2018CrossRefGoogle Scholar
  35. 35.
    National Institute of Advanced Industrial Science and Technology (2018) SDBSWeb. http://sdbs.db.aist.go.jp. Accessed 11 Jun 2018
  36. 36.
    Harmsen JMA (2001) Kinetic modelling of the dynamic behavior of an automotive three-way catalyst under cold-start conditions. Dissertation, Technische Universiteit EindhovenGoogle Scholar
  37. 37.
    Harmsen JMA, Hoebink JHBJ, Schouten JC (2001) Kinetics of the steady-state acetylene oxidation by oxygen over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. Top Catal 16/17(1/4):397–403.  https://doi.org/10.1023/A:1016685721124 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Combustion Engines Aachen (VKA)RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Inorganic Chemistry (IAC)RWTH Aachen UniversityAachenGermany
  3. 3.Center for Automotive Catalytic Systems Aachen (ACA)RWTH Aachen UniversityAachenGermany

Personalised recommendations