Advertisement

Lean NOx Removal by a Bifunctional (EtOH + NH3) Mixture Dedicated to (Ag/Al2O3 + NH3-SCR) Dual-Bed Catalytic System: Comparison Between WO3/CeZrO2 and Cu–FER as NH3-SCR Catalyst

  • M. Barreau
  • M. Delporte
  • E. Iojoiu
  • X. Courtois
  • F. Can
Original Article
  • 3 Downloads

Abstract

In a previous study, a drastic enhancement of the NOx conversion in EtOH-SCR process was achieved by means of ammonia and ethanol co-feeding over Ag/Al2O3 catalyst to avoid the NO2/NOx ratio dependency of conventional implemented urea-SCR technology. The ammonia activation was mainly attributed to the availability of hydrogen H* species resulting from EtOH dehydrogenation, which promoted the H2 assisted NH3-SCR over Ag/Al2O3. Additional conversion gain was reached with a dual-bed configuration in which a NH3-SCR catalyst (WO3/CexZr1−xO2) was added downstream to the silver-based sample (Ag/Al2O3 + NH3-SCR catalyst). This study deals with the influence of the SCR catalyst formulation on the catalytic performances of the dual-bed system. Oxide-based sample (WO3/CexZr1−xO2) and exchanged copper zeolite (Cu2.5–FER) were selected as model NH3-SCR catalysts. Results shows that WO3/CexZr1−xO2 in more appropriate in dual-bed configuration for (EtOH + NH3)-SCR process because ammonia and ethanol (or its by-products) strongly interacted together on Cu2.5–FER.

Keywords

SCR DeNOx Ag/Al2O3 Ethanol NH3 

Notes

Acknowledgements

The authors thank the European communities (FEDER) and the “Région Nouvelle Aquitaine” for financial support.

References

  1. 1.
    Miyadera T (1993) Appl Catal B 2:199–205CrossRefGoogle Scholar
  2. 2.
    Flura A, Courtois X, Can F, Royer S, Duprez D (2013) Top Catal 56:94–103CrossRefGoogle Scholar
  3. 3.
    Johnson IIWL, Fisher GB, Toops TJ (2012) Catal Today 184:166–177CrossRefGoogle Scholar
  4. 4.
    Barreau M, Tarot M-L, Duprez D, Courtois X, Can F (2018) Appl Catal B 220:19–30CrossRefGoogle Scholar
  5. 5.
    Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Krocher O, Ferri D (2015) ACS Catal 5:5657–5672CrossRefGoogle Scholar
  6. 6.
    Liu X, Wu X, Xu T, Weng D, Si Z, Ran R (2016) Chin J Cat 37:1340–1346CrossRefGoogle Scholar
  7. 7.
    Apostolescu N, Geiger B, Hizbullah K, Jan MT, Kureti S, Reichert D, Schott F, Weisweiler W (2006) Appl Catal B 62:104–114CrossRefGoogle Scholar
  8. 8.
    Qi G, Yang RT, Chang R (2001) Appl Catal B 51:93–106CrossRefGoogle Scholar
  9. 9.
    Can F, Berland S, Royer S, Courtois X, Duprez D (2013) ACS Catal 3:1120–1132CrossRefGoogle Scholar
  10. 10.
    Nova I, Tronconi E (2014) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Flura A, Can F, Courtois X, Royer S, Duprez D (2012) Appl Catal B 126:275–289CrossRefGoogle Scholar
  12. 12.
    Tarot M-L, Barreau M, Duprez D, Lauga V, Iojoiu EE, Courtois X, Can F (2018) Catalysts 8:3CrossRefGoogle Scholar
  13. 13.
    Bulánek R, Wichterlová B, Sobalík Z, Tichý J (2001) Appl Catal B 31:13–25CrossRefGoogle Scholar
  14. 14.
    Delahay G, Coq B, Broussous L (1997) Appl Catal B 12:49–59CrossRefGoogle Scholar
  15. 15.
    Dumas JM, Geron C, Kribii A, Barbier J (1989) Appl Catal B 47:9–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IC2MP (UMR 7285), Université de PoitiersPoitiers Cedex 9France
  2. 2.Renault Trucks -Volvo Group Trucks TechnologySaint-Priest CedexFrance

Personalised recommendations