N-Doped Carbon–Silica Composite Confined Pd Nanoparticles for Abatement of Methane Emission From Automobiles

  • Chaoqun Zhou
  • Wenbin Xu
  • Chunjiang Liu
  • Xiamin Chen
  • Zhongyue Zhou
  • Hao MaEmail author
  • Fei Qi
Original Article


Natural gas vehicles, as well as some other engines in automobiles, emit methane, which is a potent greenhouse gas. Developing advanced catalysts that can oxidize methane with good and stable activity is required for new emission standards of automobiles. We report here a N-doped carbon–silica composite that can well disperse Pd nanoparticles and preserve part of active Pd nanoparticles (< 8 nm) under typical conditions of exhaust gas from a working engine. Comparative studies indicate a stronger metal-support interaction between Pd nanoparticle and N-doped carbon (NC) than none N-doped carbon. A facile silica coating is formed from SiCl4 in water vapor. The silica coating encapsulates Pd/NC and prevents extreme Pd sintering. The Pd catalyst with N-doped carbon–silica composite, i.e. (Pd/NC)@SiO2, performs stable and complete conversion of 5000 ppm CH4 to CO2 and H2O at 350 °C with a space velocity of 40,000 cm3 per gram of catalyst per hour. This research illustrates the advantage of using N-doped carbons supported catalyst for methane oxidation. Future optimization could be attempted by improving the thermal stability of carbons at the reaction conditions.


Palladium Methane emission Nanoparticle sintering Metal-support interaction N-doped carbons Silica coating 



This work was supported by the National Natural Science Foundation of China (Grant No. 51761135111). The authors would like to thank Mrs. Xinqiu Guo, Mrs. Jing Liu and Ms. Jinghan Li from Instrument Analysis Center of Shanghai Jiao Tong University (SJTU-IAC) for great support of TEM characterization. Many thanks to Mrs. Ting Cheng from SJTU-IAC for assisting micropore analysis, and Mr. Weiqi Guo for his kind help in H2-TPR measurements.


  1. 1.
    Semin RAB (2008) A technical review of compressed natural gas as an alternative fuel for internal combustion engines. Am J Eng Appl Sci 1(4):302–311CrossRefGoogle Scholar
  2. 2.
    Pocoroba E, Pettersson LJ, Agrell J, Boutonnet M, Jansson K (2001) Exhaust gas catalysts for heavy-duty applications: influence of the Pd particle size and particle size distribution on the combustion of natural gas and biogas. Top Catal 16–17(1–4):407–412CrossRefGoogle Scholar
  3. 3.
    Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39(1):1–37CrossRefGoogle Scholar
  4. 4.
    Gélin P, Urfels L, Primet M, Tena E (2003) Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal Today 83(1):45–57CrossRefGoogle Scholar
  5. 5.
    Graham LA, Rideout G, Rosenblatt D, Hendren J (2008) Greenhouse gas emissions from heavy-duty vehicles. Atmos Environ 42(19):4665–4681CrossRefGoogle Scholar
  6. 6.
    Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43–50CrossRefGoogle Scholar
  7. 7.
    Farrauto RJ (2012) Low-temperature oxidation of methane. Science 337(6095):659CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Horn R, Schlögl R (2015) Methane activation by heterogeneous catalysis. Catal Lett 145(1):23–39CrossRefGoogle Scholar
  9. 9.
    Fujimoto KI, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal 179(2):431–442CrossRefGoogle Scholar
  10. 10.
    Lyubovsky M, Pfefferle L (1998) Methane combustion over the α-alumina supported Pd catalyst: activity of the mixed Pd/PdO state. Appl Catal A 173(1):107–119CrossRefGoogle Scholar
  11. 11.
    Hicks RF, Young HQI, Lee ML RG (1990) ChemInform abstract: effect of catalyst structure on methane oxidation over palladium on alumina. Cheminform 122(28):295–306Google Scholar
  12. 12.
    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle L, Datye A (2002) Catalytic combustion of methane over palladium-based catalysts. Catal Rev 44(4):593–649CrossRefGoogle Scholar
  13. 13.
    Cargnello M, Delgado Jaén JJ, Hernández Garrido JC, Bakhmutsky K, Montini T, Calvino Gámez JJ, Gorte RJ, Fornasiero P (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 43(47):713CrossRefGoogle Scholar
  14. 14.
    Specchia S, Finocchio E, Busca G, Palmisano P, Specchia V (2009) Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. J Catal 263(1):134–145CrossRefGoogle Scholar
  15. 15.
    Finocchio E, Videla AHAM, Specchia S (2015) Surface chemistry and reactivity of Pd/BaCeO3∙2ZrO2 catalyst upon sulphur hydrothermal treatment for the total oxidation of methane. Appl Catal A 505(5):183–192CrossRefGoogle Scholar
  16. 16.
    Willis JJ, Gallo A, Sokaras D, Aljama H, Nowak SH, Goodman ED, Wu L, Tassone CJ, Jaramillo TF, Abildpedersen F (2017) Systematic structure-property relationship studies in palladium-catalyzed methane complete combustion. ACS Catal 7(11):7810–7821CrossRefGoogle Scholar
  17. 17.
    Zhang S, Chen C, Cargnello M, Fornasiero P, Gorte RJ, Graham GW, Pan X (2015) Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy. Nat Commun 6:7778CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Willis JJ, Goodman ED, Wu L, Riscoe AR, Martins P, Tassone CJ, Cargnello M (2017) Systematic identification of promoters for methane oxidation catalysts using size-and composition-controlled Pd-based bimetallic nanocrystals. J Am Chem Soc 139(34):11989–11997CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Persson K, Pfefferle LD, Schwartz W, Ersson A, Järås SG (2007) Stability of palladium-based catalysts during catalytic combustion of methane: the influence of water. Appl Catal B 74(3):242–250CrossRefGoogle Scholar
  20. 20.
    Monai M, Montini T, Chen C, Fonda E, Gorte RJ, Fornasiero P (2015) Methane catalytic combustion over hierarchical Pd@CeO2/Si-Al2O3: effect of the presence of water. Chemcatchem 7(14):2038–2046CrossRefGoogle Scholar
  21. 21.
    Chen C, Yeh YH, Cargnello M, Murray CB, Fornasiero P, Gorte RJ (2015) Methane oxidation on Pd@ZrO2/Si–Al2O3 is enhanced by surface reduction of ZrO2. ACS Catal 4(11):3902–3909CrossRefGoogle Scholar
  22. 22.
    Shen J, Hayes RE, Wu X, Semagina N (2015) 100 °C temperature reduction of wet methane combustion: highly active Pd–Ni/Al2O3 catalyst versus Pd/NiAl2O4. ACS Catal 5(5):2916–2920CrossRefGoogle Scholar
  23. 23.
    Roth D, Gélin P, Primet M, Tena E (2000) Catalytic behaviour of Cl-free And Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature. Appl Catal A 203(1):37–45CrossRefGoogle Scholar
  24. 24.
    Wu L, Lian H, Willis JJ, Goodman ED, Mckay IS, Qin J, Tassone CJ, Cargnello M (2018) Tuning precursor reactivity toward nanometer-size control in palladium nanoparticles studied by in situ small angle X-ray scattering. Chem Mater 30(3):1127–1135CrossRefGoogle Scholar
  25. 25.
    Duan X, Xiao M, Liang S, Zhang Z, Zeng Y, Xi J, Wang S (2017) Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon 119:326–331CrossRefGoogle Scholar
  26. 26.
    Li Z, Liu J, Xia C, Li F (2013) Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal 3(11):2440–2448CrossRefGoogle Scholar
  27. 27.
    Gudarzi D, Ratchananusorn W, Turunen I, Salmi T, Heinonen M (2013) Preparation and study of Pd catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2. Top Catal 56(9–10):527–539CrossRefGoogle Scholar
  28. 28.
    Gao X, Wang S, Gao D, Chen Z, Liu W, Wang M, Wang S (2016) Palladium supported on carbon nanotubes for methane catalytic oxidation. Chem Eng Technol 39(5):960–968CrossRefGoogle Scholar
  29. 29.
    Kai T, Pan X, He L, Li P, Yu T, Bao X (2018) Pd supported on NC@SiC as an efficient and stable catalyst for 4-carboxybenzaldehyde hydrogenation. Catal Commun 110:79–82Google Scholar
  30. 30.
    Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X (2013) Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett 14(4):2225–2229CrossRefGoogle Scholar
  31. 31.
    Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134(41):16987–16990CrossRefGoogle Scholar
  32. 32.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry 15(16):4195CrossRefGoogle Scholar
  33. 33.
    Zheng H, Zhai T, Yu M, Xie S, Liang C, Zhao W, Wang SCI, Zhang Z, Lu X (2012) TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors. J Mater Chem C 1(2):225–229CrossRefGoogle Scholar
  34. 34.
    Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115(28):10061–10064Google Scholar
  35. 35.
    Sun X, Li Y (2005) Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir ACS J Surf Colloids 21(13):6019–6024CrossRefGoogle Scholar
  36. 36.
    Li W, Ye H, Liu G, Ji H, Zhou Y, Han K (2018) The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene. Chin J Catal 39(5):946–954CrossRefGoogle Scholar
  37. 37.
    Shang L, Bian T, Zhang B, Zhang D, Wu LZ, Tung CH, Yin Y, Zhang T (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem 126(1):2–2CrossRefGoogle Scholar
  38. 38.
    Habibi AH, Hayes RE, Semagina N (2018) Evaluation of hydrothermal stability of encapsulated PdPt@SiO2 catalyst for lean CH4 combustion. Appl Catal A 556:129–136CrossRefGoogle Scholar
  39. 39.
    Korakianitis T, Namasivayam AM, Crookes RJ (2011) Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog Energy Combust Sci 37(1):89–112CrossRefGoogle Scholar
  40. 40.
    Guo J, Lee J, Contescu CI, Gallego NC, Pantelides ST, Pennycook SJ, Moyer BA, Chisholm MF (2014) Crown ethers in graphene. Nat Commun 5(5):5389CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ercolino G, Stelmachowski P, Grzybek G, Kotarba A, Specchia S (2017) Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl Catal B 206:712–725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations