Selective Catalytic Reduction of NOx with Ammonia and Hydrocarbon Oxidation Over V2O5–MoO3/TiO2 and V2O5–WO3/TiO2 SCR Catalysts

  • Lei Zheng
  • Maria Casapu
  • Matthias Stehle
  • Olaf Deutschmann
  • Jan-Dierk GrunwaldtEmail author
Original Paper


The NH3-SCR performance in the presence of short and long chain hydrocarbons (propylene and dodecane) as well as of formaldehyde was investigated for a series of V2O5–MoO3/TiO2 (VMoTi) and V2O5–WO3/TiO2 (VWTi) catalysts. The results demonstrate that vanadium oxides act as the main catalytically active component for NOx conversion, hydrocarbon (HC) and formaldehyde oxidation. Among VMoTi and VWTi materials with different vanadium loading, the catalysts containing 3 wt% V2O5 lead to the highest catalytic activity. The ability to simultaneously remove NOx, HC and HCHO over VMoTi is inferior to that of the conventional WO3-based catalyst. However, VMoTi exhibits higher CO2 selectivity, especially during oxidation of long-chain HCs, which represents an important advantage for a possible multifunctional catalyst. Apart from CO, formaldehyde was detected as byproduct during HC oxidation for both catalyst formulations.


SCR DPF Hydrocarbon oxidation Formaldehyde Vanadium Molybdenum 



The authors gratefully acknowledge financial support of this work via provision of a PhD scholarship to L. Zheng by China Scholarship Council (CSC). We thank Dr. D. Doronkin, D. Zengel and J. Pesek for technical support with respect to catalysts preparation and testing, A. Beilmann for the BET measurements. We gratefully acknowledge KIT and Deutsche Forschungsgemeinschaft (DFG) for financing the Renishaw inVia Reflex Spectrometer System (INST 121384/73-1).

Supplementary material

11244_2018_1097_MOESM1_ESM.pdf (762 kb)
Supplementary material 1 (PDF 762 KB)


  1. 1.
    Deutschmann O, Grunwaldt J-D (2013) Exhaust gas aftertreatment in mobile systems: status, challenges, and perspectives. Chem Ing Tech 85(5):595–617Google Scholar
  2. 2.
    Twigg MV (2011) Catalytic control of emissions from cars. Catal Today 163(1):33–41Google Scholar
  3. 3.
    Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18(1):1–36Google Scholar
  4. 4.
    Gao F, Kwak JH, Szanyi J, Peden CHF (2013) Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO(x) catalysts. Top Catal 56(15–17):1441–1459Google Scholar
  5. 5.
    Ruggeri M, Nova I, Tronconi E (2013) Experimental study of the NO oxidation to NO2 over metal promoted zeolites aimed at the identification of the standard SCR rate determining step. Top Catal 56(1–8):109–113Google Scholar
  6. 6.
    He YY, Ford ME, Zhu MH, Liu QC, Tumuluri U, Wu ZL, Wachs IE (2016) Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5–WO3/TiO2 catalysts. Appl Catal B 193:141–150Google Scholar
  7. 7.
    Marberger A, Elsener M, Ferri D, Kröcher O (2015) VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging. Catalysts 5(4):1704–1720Google Scholar
  8. 8.
    Ottinger N, Veele R, Xi Y, Liu ZG (2016) Conversion of short-chain alkanes by vanadium-based and Cu/zeolite SCR catalysts. SAE Int J Engines 9(2):1241–1246Google Scholar
  9. 9.
    Wagner DV, Yang Z (2014) China V gasoline and diesel fuel quality standards. Available at https://www.theicctorg/publications/china-v-gasoline-and-diesel-fuel-quality-standards. Accessed on 21 June 2018
  10. 10.
    Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal 222(1–2):221–236Google Scholar
  11. 11.
    Murkute AD, Vanderwiel D (2015) Active sites evaluation of vanadia based powdered and extruded SCR catalysts prepared on commercial titania. Catal Lett 145(6):1224–1236Google Scholar
  12. 12.
    Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M (2007) Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J Catal 245(1):1–10Google Scholar
  13. 13.
    Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F (1999) Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal 187(2):419–435Google Scholar
  14. 14.
    Liu S, Obuchi A, Oi-Uchisawa J, Nanba T, Kushiyama S (2001) Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5. Appl Catal B 30(3):259–265Google Scholar
  15. 15.
    Tan J, Solbrig C, Schmieg SJ (2011) The development of advanced 2-way SCR/DPF systems to meet future heavy-duty diesel emissions. SAE Tech Paper No. 2011-01-1140Google Scholar
  16. 16.
    Johansen K, Bentzer H, Kustov A, Larsen K, Janssens TVW, Barfod RG (2014) Integration of vanadium and zeolite type SCR functionality into DPF in exhaust aftertreatment systems—advantages and challenges. SAE Tech Paper No. 2014-01-1523Google Scholar
  17. 17.
    López-De Jesús YM, Chigada PI, Watling TC, Arulraj K, Thorén A, Greenham N, Markatou P (2016) NOx and PM reduction from diesel exhaust using vanadia SCRF®. SAE Int J Engines 9(2):1247–1257Google Scholar
  18. 18.
    Bertole C (2018) Formaldehyde oxidation over emission control catalysts. SAE Tech Paper No. 2018-01-1274Google Scholar
  19. 19.
    Andersson J, Antonsson M, Eurenius L, Olsson E, Skoglundh M (2007) Deactivation of diesel oxidation catalysts: vehicle- and synthetic aging correlations. Appl Catal B 72(1):71–81Google Scholar
  20. 20.
    Ganesh D, Nagarajan G, Mohamed Ibrahim M (2008) Study of performance, combustion and emission characteristics of diesel homogeneous charge compression ignition (HCCI) combustion with external mixture formation. Fuel 87(17):3497–3503Google Scholar
  21. 21.
    Bauer M, Wachtmeister G (2009) Formation of formaldehyde in lean-burn gas engines. MTZ 70(7–8):50–57Google Scholar
  22. 22.
    Finocchio E, Baldi M, Busca G, Pistarino C, Romezzano G, Bregani F, Toledo GP (2000) A study of the abatement of VOC over V2O5–WO3-TiO2 and alternative SCR catalysts. Catal Today 59(3):261–268Google Scholar
  23. 23.
    Koebel M, Elsener M (1998) Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process. Ind Eng Chem Res 37(10):3864–3868Google Scholar
  24. 24.
    Busca G, Baldi M, Pistarino C, Gallardo Amores JM, Sanchez Escribano V, Finocchio E, Romezzano G, Bregani F, Toledo GP (1999) Evaluation of V2O5–WO3-TiO2 and alternative SCR catalysts in the abatement of VOCs. Catal Today 53(4):525–533Google Scholar
  25. 25.
    Christensen JM, Grunwaldt J-D, Jensen AD (2016) Importance of the oxygen bond strength for catalytic activity in soot oxidation. Appl Catal B 188:235–244Google Scholar
  26. 26.
    Watling TC, Lopez Y, Pless JD, Sukumar B, Klink W, Markatou P (2013) Removal of hydrocarbons and particulate matter using a vanadia selective catalytic reduction catalyst: an experimental and modeling study. SAE Int J Engines 6(2):882–897Google Scholar
  27. 27.
    Ottinger NA, Xi Y, Foley B, Mnichowicz B, Liu Z (2013) Hydrocarbon interaction with vanadium-based SCR catalysts—a mechanistic study. Proc CLEERS WorkshopGoogle Scholar
  28. 28.
    Heo I, Lee Y, Nam I-S, Choung JW, Lee J-H, Kim H-J (2011) Effect of hydrocarbon slip on NO removal activity of CuZSM5, FeZSM5 and V2O5/TiO2 catalysts by NH3. Microporous Mesoporous Mater 141(1):8–15Google Scholar
  29. 29.
    Japke E, Casapu M, Trouillet V, Deutschmann O, Grunwaldt J-D (2015) Soot and hydrocarbon oxidation over vanadia-based SCR catalysts. Catal Today 258:461–469Google Scholar
  30. 30.
    Leocadio ICL, Braun S, Schmal M (2004) Diesel soot combustion on Mo/Al2O3 and V/Al2O3 catalysts: investigation of the active catalytic species. J Catal 223(1):114–121Google Scholar
  31. 31.
    Debecker DP, Delaigle R, Bouchmella K, Eloy P, Gaigneaux EM, Mutin PH (2010) Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route. Catal Today 157(1):125–130Google Scholar
  32. 32.
    Mei C, Yuan Y, Li X, Mei D (2016) Microscopic phase structure of Mo-based catalyst and its catalytic activity for soot oxidation. Bull Chem React Eng Catal 11:389–397Google Scholar
  33. 33.
    Mei C, Mei D, Yue S, Chen Z, Yuan Y (2017) Optimized heating rate and soot-catalyst ratio for soot oxidation over MoO3 catalyst. Bull Chem React Eng Catal 12:408–414Google Scholar
  34. 34.
    Toniolo FS, Barbosa-Coutinho E, Schwaab M, Leocadio ICL, Aderne RS, Schmal M, Pinto JC (2008) Kinetics of the catalytic combustion of diesel soot with MoO3/Al2O3 catalyst from thermogravimetric analyses. Appl Catal A 342(1):87–92Google Scholar
  35. 35.
    Parus W, Paterkowski W (2009) Catalytic oxidation of organic pollutants. Pol J Chem Technol 11(4):30–37Google Scholar
  36. 36.
    Bertinchamps F, Grégoire C, Gaigneaux EM (2006) Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics: Part II: Influence of the nature and addition protocol of secondary phases to VOx/TiO2. Appl Catal B 66(1):10–22Google Scholar
  37. 37.
    Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) Reactivity and physicochemical characterization of V2O5–WO3/TiO2 De-NOx catalysts. J Catal 155(1):117–130Google Scholar
  38. 38.
    Bond GC, Tahir SF (1991) Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity. Appl Catal 71(1):1–31Google Scholar
  39. 39.
    Vermaire DC, van Berge PC (1989) The preparation of WO3/TiO2 and WO3/Al2O3 and characterization by temperature-programmed reduction. J Catal 116(2):309–317Google Scholar
  40. 40.
    Kompio P, Brückner A, Hipler F, Auer G, Loffler E, Grünert W (2012) A new view on the relations between tungsten and vanadium in V2O5–WO3/TiO2 catalysts for the selective reduction of NO with NH3. J Catal 286:237–247Google Scholar
  41. 41.
    Srnak T, Dumesic J, Clausen B, Törnqvist E, Topsøe N-Y (1992) Temperature-programmed desorption/reaction and in situ spectroscopic studies of vanadia/titania for catalytic reduction of nitric oxide. J Catal 135(1):246–262Google Scholar
  42. 42.
    Michalow-Mauke KA, Lu Y, Ferri D, Graule T, Kowalski K, Elsener M, Kröcher O (2015) WO3/CeO2/TiO2 catalysts for selective catalytic reduction of NOx by NH3: effect of the synthesis method. CHIMIA Int J Chem 69(4):220–224Google Scholar
  43. 43.
    Song I, Youn S, Lee H, Lee SG, Cho SJ, Kim DH (2017) Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3. Appl Catal B 210:421–431Google Scholar
  44. 44.
    Balachandran U, Eror NG (1982) Raman-spectra of titanium-dioxide. J Solid State Chem 42(3):276–282Google Scholar
  45. 45.
    Frank O, Zukalova M, Laskova B, Kurti J, Koltai J, Kavan L (2012) Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16,17,18). Phys Chem Chem Phys 14(42):14567–14572PubMedGoogle Scholar
  46. 46.
    Ross-Medgaarden EI, Wachs IE (2007) Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy. J Phys Chem C 111(41):15089–15099Google Scholar
  47. 47.
    Went GT, Oyama ST, Bell AT (1990) Laser Raman-spectroscopy of supported vanadium-oxide catalysts. J Phys Chem 94(10):4240–4246Google Scholar
  48. 48.
    Reiche MA, Ortelli E, Baiker A (1999) Vanadia grafted on TiO2-SiO2, TiO2 and SiO2 aerogels—structural properties and catalytic behaviour in selective reduction of NO by NH3. Appl Catal B 23(2–3):187–203Google Scholar
  49. 49.
    Roark RD, Kohler SD, Ekerdt JG, Kim DS, Wachs IE (1992) Monolayer dispersion of molybdenum on silica. Catal Lett 16(1–2):77–83Google Scholar
  50. 50.
    Rasmussen SB, Mikolajska E, Daturi M, Bañares MA (2012) Structural characteristics of an amorphous VPO monolayer on alumina for propane ammoxidation. Catal Today 192(1):96–103Google Scholar
  51. 51.
    Zhao C, Wachs IE (2008) Selective oxidation of propylene over model supported V2O5 catalysts: influence of surface vanadia coverage and oxide support. J Catal 257(1):181–189Google Scholar
  52. 52.
    Topsøe NY, Dumesic JA, Topsøe H (1995) Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: I.I. Studies of active sites and formulation of catalytic cycles. J Catal 151(1):241–252Google Scholar
  53. 53.
    Bertinchamps F, Treinen M, Eloy P, Dos Santos AM, Mestdagh MM, Gaigneaux EM (2007) Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Appl Catal B 70(1):360–369Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lei Zheng
    • 1
  • Maria Casapu
    • 1
  • Matthias Stehle
    • 1
  • Olaf Deutschmann
    • 1
  • Jan-Dierk Grunwaldt
    • 1
    Email author
  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations