Topics in Catalysis

, Volume 62, Issue 1–4, pp 100–107 | Cite as

The Role of Protons and Formation Cu(NH3)2+ During Ammonia-Assisted Solid-State Ion Exchange of Copper(I) Oxide into Zeolites

  • Peter N. R. VennestrømEmail author
  • Lars F. Lundegaard
  • Christoffer Tyrsted
  • Dmitriy A. Bokarev
  • Alina I. Mytareva
  • Galina N. Baeva
  • Alexandr Y. Stakheev
  • Ton V. W. Janssens
Original Article


Solid-state ion exchange in mixtures of copper oxides and zeolites can occur at temperatures as low as 200–250 °C in the presence of ammonia (NH3-SSIE), thus providing a low-temperature method to activate zeolites for selective catalytic reduction nitrogen oxide (NH3-SCR). The ammonia induced solid-state ion exchange process is studied in more detail, by monitoring the development of NH3-SCR activity with duration of NH3-SSIE, formation of a mobile linear [Cu(NH3)2]+ complex with X-ray spectroscopy, and the transfer of Cu to the zeolite by XRD, and evaporation of copper(I)-oxide by TGA. We find that the linear [Cu(NH3)2]+ complex is formed in mixtures of copper-oxide and *BEA and CHA zeolites upon exposure to ammonia. Increasing the temperature for NH3-SSIE to well above 300 °C leads to a less efficient Cu-transfer. This indicates that the [Cu(NH3)2]+ complex is crucial for the NH3-SSIE process. The non-monotonous development of NOx conversion and N2O yield with duration of NH3-SSIE is probably due to an initial enrichment of Cu in the outer shell of the zeolite crystals. We also show that the presence of H+ or NH4+-ions in the zeolite are necessary for the NH3-SSIE, and that the transfer of Cu from the Cu-oxides to the zeolites most likely occurs via a surface diffusion process.


Zeolites Solid-state ion exchange Selective catalytic reduction Cuprous oxide 


  1. 1.
    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395CrossRefGoogle Scholar
  2. 2.
    Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Catal Today 110:303–309CrossRefGoogle Scholar
  3. 3.
    Grundner S, Markovits MA, Li G, Tromp M, Pidko EA, Hensen EJ, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546CrossRefGoogle Scholar
  4. 4.
    Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA (2016) J Catal 338:305–312CrossRefGoogle Scholar
  5. 5.
    Kanazirev VI, Price GL (1995) J Mol Catal A 96:145CrossRefGoogle Scholar
  6. 6.
    Groothaert MH, Lievens K, Leeman H, Weckhuysen BM, Schoonheydt RA (2003) J Catal 220:500–512CrossRefGoogle Scholar
  7. 7.
    Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev 50:492–531CrossRefGoogle Scholar
  8. 8.
    Dusselier M, Davis ME (2018) Chem Rev 118:5265–5329CrossRefGoogle Scholar
  9. 9.
    Stakheev AY, Khodakov AY, Kustov LM, Kazansky VB, Minachev KM (1992) Zeolites 12:866–869CrossRefGoogle Scholar
  10. 10.
    Kucherov AV, Slinkin AA (1986) Zeolites 6:175–180CrossRefGoogle Scholar
  11. 11.
    Wang D, Gao F, Peden CHF, Li JH, Kamasamudram K, Epling WS (2014) ChemCatChem 6:1579–1583CrossRefGoogle Scholar
  12. 12.
    Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2015) Appl Catal B 162:501–514CrossRefGoogle Scholar
  13. 13.
    Shwan S, Skoglundh M, Lundegaard LF, Tiruvalam RR, Janssens TVW, Carlsson A, Vennestrøm PNR (2015) ACS Catal 5:16–19CrossRefGoogle Scholar
  14. 14.
    Stakheev AY, Bokarev DA, Mytareva AI, Janssens TVW, Vennestrøm PNR (2017) Top Catal 60:255–259CrossRefGoogle Scholar
  15. 15.
    Giordanino F, Borfecchia E, Lomachenko KA, Lazzarini A, Agostini G, Gallo E, Soldatov AV, Beato P, Bordiga S, Lamberti C (2014) J Phys Chem Lett 5:1552–1559CrossRefGoogle Scholar
  16. 16.
    Gomez-Lor B, Iglesias M, Cascales C, Gutierrez-Puebla E, Monge MAA (2001) Chem Mater 13:1364–1368CrossRefGoogle Scholar
  17. 17.
    Chen L, Jansson J, Skoglundh M, Grönbeck H (2016) J Phys Chem C 120:29182–29189CrossRefGoogle Scholar
  18. 18.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  19. 19.
    Vennestrøm PNR, Janssens TVW, Kustov A, Grill M, Puig-Molina A, Lundegaard LF, Tiruvalam RR, Concepción P, Corma A (2014) J Catal 309:477–490CrossRefGoogle Scholar
  20. 20.
    Chen HY, Wei Z, Kollar M, Gao F, Wang Y, Szanyi J, Peden CHF (2015) J Catal 329:490–498CrossRefGoogle Scholar
  21. 21.
    Lomachenko KA et al (2016) J Am Chem Soc 138:12025–12028CrossRefGoogle Scholar
  22. 22.
    Gao F, Mei D, Wang Y, Szanyi JJ, Peden CHF (2017) J Am Chem Soc 139:4935–4942CrossRefGoogle Scholar
  23. 23.
    Paolucci C et al (2016) J Am Chem Soc 138:6028–6048CrossRefGoogle Scholar
  24. 24.
    Lamble G, Moen A, Nicholson DG (1994) J Chem Soc Faraday Trans 90:2211–2213CrossRefGoogle Scholar
  25. 25.
    Moen A, Nicholson DG, Rønning M (1995) Ion J Chem Soc Faraday Trans 91:3189–3194CrossRefGoogle Scholar
  26. 26.
    Janssens TVW et al (2015) ACS Catal 5:2832–2845CrossRefGoogle Scholar
  27. 27.
    Paolucci C et al (2017) Science 357:898–903CrossRefGoogle Scholar
  28. 28.
    Vennestrøm PNR et al (2013) ACS Catal 3:2158–2161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peter N. R. Vennestrøm
    • 1
    Email author
  • Lars F. Lundegaard
    • 2
  • Christoffer Tyrsted
    • 2
  • Dmitriy A. Bokarev
    • 3
  • Alina I. Mytareva
    • 3
  • Galina N. Baeva
    • 3
  • Alexandr Y. Stakheev
    • 3
  • Ton V. W. Janssens
    • 1
  1. 1.Umicore Denmark ApSKgs. LyngbyDenmark
  2. 2.Haldor Topsoe A/SKgs. LyngbyDenmark
  3. 3.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations