Advertisement

Topics in Catalysis

, Volume 62, Issue 1–4, pp 305–314 | Cite as

Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis

  • Aleksey A. VedyaginEmail author
  • Yury V. Shubin
  • Roman M. Kenzhin
  • Pavel E. Plyusnin
  • Vladimir O. Stoyanovskii
  • Alexander M. Volodin
Original Article

Abstract

Alloys of partly miscible metals attract a growing attention due to their unique physicochemical properties. Palladium–rhodium solid solution was synthesized using a multi-metal single precursor concept. Pd–Rh/γ-Al2O3 catalyst was prepared by an impregnation of the support with a solution of a precursor containing organic ligand. The Pd:Rh ratio in the alloy was 3:2. The samples were characterized by a powder X-ray diffraction analysis, a transmission electron microscopy, electron paramagnetic resonance and photoluminescence spectroscopies. The catalytic behavior of the samples was examined in CO oxidation reaction under prompt thermal aging conditions. The stability of the bimetallic catalyst was found to be improved if compare with monometallic reference samples. Mutual anchoring of palladium and rhodium prevents both the surface migration of Pd particles followed by their agglomeration and the diffusion of rhodium ions into the bulk of alumina support. Improved metal-support interaction for the studied system was found to be facilitated by presence of electron donor sites on the surface of the support.

Keywords

Partly miscible metals Pd–Rh alloy Double complex salt CO oxidation Prompt thermal aging 

Notes

Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (No. 14.581.21.0028, unique agreement identifier RFMEFI58117X0028) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020”.

Supplementary material

11244_2018_1093_MOESM1_ESM.pdf (421 kb)
Supplementary material 1 (PDF 421 KB)

References

  1. 1.
    Shubin YV, Plyusnin PE, Sharafutdinov MR, Makotchenko EV, Korenev SV (2017) Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir and Au–Ir–Rh nanoalloys. Nanotechnology 28:205302CrossRefPubMedGoogle Scholar
  2. 2.
    Pechenyuk SI, Zolotarev АА, Gosteva AN, Domonov DP, Shimkin АА (2017) Crystal structures and thermal behaviour of double complex compounds incorporating the [Cr{CO(NH2)2}6]3+ cation. J Mol Struct 1147:388–396CrossRefGoogle Scholar
  3. 3.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd-Rh catalysts on γ-Al2O3 support. Catal Today 238:80–85CrossRefGoogle Scholar
  4. 4.
    Oezaslan M, Hasche F, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23:2159–2165CrossRefGoogle Scholar
  5. 5.
    Yakovlev IV, Volodin AM, Zaikovskii VI, Stoyanovskii VO, Lapina OB, Vedyagin AA (2018) Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceram Int 44:4801–4806CrossRefGoogle Scholar
  6. 6.
    Karnaukhov T, Vedyagin A, Mishakov I, Bedilo A, Volodin A (2018) Synthesis and characterization of nanocrystalline M-Mg-O and carbon-coated MgO systems. Mater Sci Forum 917:157–161CrossRefGoogle Scholar
  7. 7.
    Zaikovskii VI, Volodin AM, Stoyanovskii VO, Cherepanova SV, Vedyagin AA (2018) Effect of carbon coating on spontaneous C12A7 whisker formation. Appl Surf Sci 444:336–338CrossRefGoogle Scholar
  8. 8.
    Volodin AM, Zaikovskii VI, Kenzhin RM, Bedilo AF, Mishakov IV, Vedyagin AA (2017) Synthesis of nanocrystalline calcium aluminate C12A7 under carbon nanoreactor conditions. Mater Lett 189:210–212CrossRefGoogle Scholar
  9. 9.
    Shipitcyna A, Kinnunen NM, Hilli Y, Suvanto M, Pakkanen TA (2016) Characterization and activity of Pd–Ir catalysts in CO and C3H6 oxidation under stoichiometric conditions. Top Catal 59:1097–1103CrossRefGoogle Scholar
  10. 10.
    Hilli Y, Kinnunen NM, Suvanto M, Savimäki A, Kallinen K, Pakkanen TA (2015) Preparation and characterization of Pd-Ni bimetallic catalysts for CO and C3H6 oxidation under stoichiometric conditions. Appl Catal A 497:85–95CrossRefGoogle Scholar
  11. 11.
    Shang H, Wang Y, Cui Y, Fang R, Hu W, Gong M, Chen Y (2015) Catalytic performance of Pt-Rh/CeZrYLa + LaAl with stoichiometric natural gas vehicles emissions. Chin J Catal 36:290–298CrossRefGoogle Scholar
  12. 12.
    Cai F, Yang L, Shan S, Mott D, Chen BH, Luo J, Zhong C-J (2016) Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts 6:96CrossRefGoogle Scholar
  13. 13.
    Fernandes VR, Bossche MVD, Knudsen J, Farstad MH, Gustafson J, Venvik HJ, Grönbeck H, Borg A (2016) Reversed hysteresis during CO oxidation over PdAg(100). ACS Catal 6:4154–4161CrossRefGoogle Scholar
  14. 14.
    De Clercq A, Margeat O, Sitja G, Henry CR, Giorgio S (2016) Core-shell Pd-Pt nanocubes for the CO oxidation. J Catal 336:33–40CrossRefGoogle Scholar
  15. 15.
    Kobayashi H, Kusada K, Kitagawa H (2015) Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc Chem Res 48:1551–1559CrossRefPubMedGoogle Scholar
  16. 16.
    Shan S, Petkov V, Prasai B, Wu J, Joseph P, Skeete Z, Kim E, Mott D, Malis O, Luo J, Zhong C-J (2015) Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale 7:18936–18948CrossRefPubMedGoogle Scholar
  17. 17.
    Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13:2556–2562CrossRefPubMedGoogle Scholar
  18. 18.
    Renzas JR, Huang W, Zhang Y, Grass ME, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by NO. Catal Lett 141:235–241CrossRefGoogle Scholar
  19. 19.
    Oh SH, Triplett T (2014) Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: multiple roles of CO. Catal Today 231:22–32CrossRefGoogle Scholar
  20. 20.
    Kang SB, Han SJ, Nam I-S, Cho BK, Kim CH, Oh SH (2014) Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem Eng J 241:273–287CrossRefGoogle Scholar
  21. 21.
    Bounechada D, Groppi G, Forzatti P, Kallinen K, Kinnunen T (2013) Enhanced methane conversion under periodic operation over a Pd/Rh based TWC in the exhausts from NGVs. Top Catal 56:372–377CrossRefGoogle Scholar
  22. 22.
    Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383CrossRefGoogle Scholar
  23. 23.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B 103:397–403CrossRefGoogle Scholar
  24. 24.
    Medvedev DA, Rybinskaya AA, Kenzhin RM, Volodin AM, Bedilo AF (2012) Characterization of electron donor sites on Al2O3 surface. Phys Chem Chem Phys 14:2587–2598CrossRefPubMedGoogle Scholar
  25. 25.
    Vedyagin AA, Volodin AM, Kenzhin RM, Chesnokov VV, Mishakov IV (2016) CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites. Molecules 21:1289CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Rogov VA, Kriventsov VV, Mishakov IV (2018) The role of chemisorbed water in formation and stabilization of active sites on Pd/alumina oxidation catalysts. Catal Today 307:102–110CrossRefGoogle Scholar
  27. 27.
    Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl Catal B 90:141–146CrossRefGoogle Scholar
  28. 28.
    Plyusnin PE, Makotchenko EV, Shubin YV, Baidina IA, Korolkov IV, Sheludyakova LA, Korenev SV (2015) Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6]. J Mol Struct 1100:174–179CrossRefGoogle Scholar
  29. 29.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today 238:80–86CrossRefGoogle Scholar
  30. 30.
    Netzsch-Gerätebau (2013) NETZSCH proteus thermal analysis. Netzsch-Gerätebau, SelbGoogle Scholar
  31. 31.
    Kraus W, Nolze G (2000) POWDERCELL 2.4 program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Federal Institute for Materials Research and Testing, BerlinGoogle Scholar
  32. 32.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  33. 33.
    Krumm S (1996) An interactive Windows program for profile fitting and size/strain analysis. Mater Sci Forum 228–231:183–190CrossRefGoogle Scholar
  34. 34.
    Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd-Rh alloy catalysts. Top Catal 56:1008–1014CrossRefGoogle Scholar
  35. 35.
    Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal-metal and metal-support interaction on activity and stability of Pd Rh/alumina in CO oxidation. Catal Today 293–294:73–81CrossRefGoogle Scholar
  36. 36.
    Boehm HP, Knözinger H, Anderson JR, Boudart M (1983) Catalysis-science and technology, vol 4. Springer, BerlinGoogle Scholar
  37. 37.
    Gao X, Wachs IE (2000) Investigation of surface structures of supported vanadium oxide catalysts by UV–vis–NIR diffuse reflectance spectroscopy. J Phys Chem B 104:1261–1268CrossRefGoogle Scholar
  38. 38.
    Gaspar AB, Dieguez LC (2000) Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl Catal A 201:241–251CrossRefGoogle Scholar
  39. 39.
    Tessier D, Rakai A, Bozon-Verduraz F (1992) Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J Chem Soc Faraday Trans 88:741–749CrossRefGoogle Scholar
  40. 40.
    Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Bespalko YN, Plyusnin PE, Shubin YV (2018) Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. J Lumin 204:609–617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aleksey A. Vedyagin
    • 1
    • 2
    Email author
  • Yury V. Shubin
    • 3
    • 4
  • Roman M. Kenzhin
    • 1
  • Pavel E. Plyusnin
    • 3
    • 4
  • Vladimir O. Stoyanovskii
    • 1
  • Alexander M. Volodin
    • 1
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussian Federation
  3. 3.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation
  4. 4.National Research University – Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations