Advertisement

Formaldehyde Oxidation Over Platinum: On the Kinetics Relevant to Exhaust Conditions of Lean-Burn Natural Gas Engines

  • Bentolhoda Torkashvand
  • Lubow Maier
  • Patrick Lott
  • Thomas Schedlbauer
  • Jan-Dierk Grunwaldt
  • Olaf DeutschmannEmail author
Original Article
  • 75 Downloads

Abstract

Kinetics of formaldehyde oxidation over Pt-based catalytic converters at oxygen-rich conditions related to the exhaust of lean-burn natural gas engines is investigated experimentally and numerically. The numerical model proposed in this work is based on a thermodynamically consistent detailed surface reaction mechanism consisting of 30 elementary-like-steps among six gas-phase and ten surface species. The surface mechanism is evaluated by comparison of the results of the numerical simulation with the experimental measurements. The experimental data are derived from isothermal end-of-pipe tests over a powdered Pt–TiO2–SiO2 catalyst as well as spatially resolved concentration measurements conducted with a catalytic monolith sample over a wide range of temperature. The measurements were performed in a gas mixture of 80 ppm HCHO, 10 vol% O2, 12 vol% H2O and 6 vol% CO2 balanced with N2, containing a formaldehyde concentration typical in the exhaust of lean-burn gas engines. The simulations are based on a one-dimensional approach for the description of a packed-bed reactor and a two-dimensional model for the calculation of flow field and chemical reactions inside a single channel of a monolith.

Keywords

Formaldehyde Platinum Kinetic Model Surface reaction mechanism Lean-burn gas engines 

Notes

Acknowledgements

We very much appreciate fruitful discussions with Maria Casapu (KIT). We also gratefully thank the German Research Association for Combustion Engines e.V. (FVV) for funding the project “Formaldehyde” (Project-No. 1187) chaired by Heinrich Baas. The authors also thank Steinbeis GmbH & Co. KG für Technologietransfer (STZ 240 Reaktive Strömungen) for a cost free license of DETCHEM™.

Supplementary material

11244_2018_1087_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 72 KB)

References

  1. 1.
    Torkashvand B, Lott P, Zengel D, Maier L, Hettel M, Grunwaldt J-D, Deutschmann O (2018) Chem Eng J.  https://doi.org/10.1016/j.cej.2018.08.186 CrossRefGoogle Scholar
  2. 2.
    Lemel M, Hultqvist A, Vressner A, Nordgren H, Persson H, Johansson B (2005) SAE Trans J Fuels Lubr 114:1347–1357Google Scholar
  3. 3.
    Corrêa SM, Arbilla G (2005) Atmos Environ 39:4513–4518CrossRefGoogle Scholar
  4. 4.
    Charles E, Mitchell DB, Olsen (2000) J Eng Gas Turbines Power 122:603–610CrossRefGoogle Scholar
  5. 5.
    Yoon S, Hu S, Kado NY, Thiruvengadam A, Collins JF, Gautam M, Herner JD, Ayala A (2014) Atmos Environ 83:220–228CrossRefGoogle Scholar
  6. 6.
    Karavalakis G, Hajbabaei M, Jiang Y, Yang J, Johnson KC, Cocker DR, Durbin TD (2016) Fuel 175:146–156CrossRefGoogle Scholar
  7. 7.
    Zhang C, He H (2007) Catal Today 126:345–350CrossRefGoogle Scholar
  8. 8.
    Colussi S, Boaro M, de Rogatis L, Pappacena A, de Leitenburg C, Llorca J, Trovarelli A (2015) Catal Today 253:163–171CrossRefGoogle Scholar
  9. 9.
    Zhang C, He H, Tanaka K-i (2006) Appl Catal B 65:37–43CrossRefGoogle Scholar
  10. 10.
    Bai B, Qiao Q, Li J, Hao J (2016) Chin J Catal 37:102–122CrossRefGoogle Scholar
  11. 11.
    Mhadeshwar AB, Vlachos DG (2007) Ind Eng Chem Res 46:5310–5324CrossRefGoogle Scholar
  12. 12.
    Li S, Lu X, Guo W, Zhu H, Li M, Zhao L, Li Y, Shan H (2012) Formaldehyde oxidation on the Pt/TiO2(101) surface. J Organomet Chem 704:38–48CrossRefGoogle Scholar
  13. 13.
    Attard GA, Ebert HD, Parsons R (1990) Surf Sci 240:125–135CrossRefGoogle Scholar
  14. 14.
    McCabe RW, McCready DF (1984) Chem Phys Lett 111:89–93CrossRefGoogle Scholar
  15. 15.
    Sharma H, Mhadeshwar A (2012) Appl Catal B 127:190–204CrossRefGoogle Scholar
  16. 16.
    Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci Lett 127:A177CrossRefGoogle Scholar
  17. 17.
    Silbaugh TL, Karp EM, Campbell CT (2016) Surf Sci 650:140–143CrossRefGoogle Scholar
  18. 18.
    Mhadeshwar AB, Wang H, Vlachos DG (2003) J Phys Chem B 107:12721–12733CrossRefGoogle Scholar
  19. 19.
    Peng J, Wang S (2007) Appl Catal B 73:282–291CrossRefGoogle Scholar
  20. 20.
    Delgado K, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O (2015) Catalysts 5:871–904CrossRefGoogle Scholar
  21. 21.
    Schedlbauer T, Gremminger A, Casapu M, Deutschmann O, Grunwaldt J-D (2018) SAE Technical Paper 2018-01-5021Google Scholar
  22. 22.
    Hettel M, Diehm C, Torkashvand B, Deutschmann O (2013) Catal Today 216:2–10CrossRefGoogle Scholar
  23. 23.
    Diehm C, Deutschmann O (2014) Int J Hydrog Energy 39:17998–18004CrossRefGoogle Scholar
  24. 24.
    Livio D, Diehm C, Donazzi A, Beretta A, Deutschmann O (2013) Appl Catal A 467:530–541CrossRefGoogle Scholar
  25. 25.
    O.Deutschmann S, Tischer S, Kleditzsch VM, Janardhanan C, Correa D, Chatterjee N, Mladenov HD, Minh, DETCHEM Software package, 2017. http://www.detchem.com
  26. 26.
    Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47–60CrossRefGoogle Scholar
  27. 27.
    Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory and practice. John Wiley & Son, Inc., HobokenCrossRefGoogle Scholar
  28. 28.
    Deutschmann O, Knözinger H, Schüth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  29. 29.
    Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. ACS, Washington DC.Google Scholar
  30. 30.
    Cortright RD, Dumesic JA (2001) Advances in catalysis. Academic Press, Cambridge, pp 161–264Google Scholar
  31. 31.
    Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119CrossRefGoogle Scholar
  32. 32.
    Shustorovich E (1990) Adv Catal 37:101–163Google Scholar
  33. 33.
    Deutschmann O, Maier LI, Riedel U, Stroemman AH, Dibble RW (2000) Catal Today 59:141–150CrossRefGoogle Scholar
  34. 34.
    Ljungström S, Kasemo B, Rosen A, Wahnström T, Fridell E (1989) Surf Sci 216:63–92CrossRefGoogle Scholar
  35. 35.
    Hellsing B, Kasemo B, Ljungström S, Rosén A, Wahnström T (1987) Surf Sci 189–190:851–860CrossRefGoogle Scholar
  36. 36.
    Zhdanov VP, Kasemo B (1994) Surf Sci Rep 20:113–189CrossRefGoogle Scholar
  37. 37.
    Poelsema B, Mechtersheimer G, Comsa G (1981) Surf Sci 111:519–544CrossRefGoogle Scholar
  38. 38.
    Rinnemo M, Deutschmann O, Behrendt F, Kasemo B (1997) Combust Flame 111:312–326CrossRefGoogle Scholar
  39. 39.
    Campbell CT, Ertl G, Kuipers H, Segner J (1981) Surf Sci 107:207–219CrossRefGoogle Scholar
  40. 40.
    Parker DH, Bartram ME, Koel BE (1989) Surf Sci 217:489–510CrossRefGoogle Scholar
  41. 41.
    Holmgren A, Duprez D, Andersson B (1999) J Catal 182:441–448CrossRefGoogle Scholar
  42. 42.
    Ehsasi MM, Rezaie-Serej S, Block JH, Christmann K (1990) J Chem Phys 92:7596–7609CrossRefGoogle Scholar
  43. 43.
    McCabe RW, Schmidt LD (1977) Surf Sci 65:189–209CrossRefGoogle Scholar
  44. 44.
    Zeigarnik AV, Callaghan C, Datta R, Fishtik I, Shustorovich E (2005) Kinet Catal 46:509–515CrossRefGoogle Scholar
  45. 45.
    Zerkle DK, Allendorf MD, Wolf M, Deutschmann O (2000) J Catal 196:18–39CrossRefGoogle Scholar
  46. 46.
    Nibbelke RH, Campman MAJ, Hoebink JHBJ, Marin GB (1997) J Catal 171:358–373CrossRefGoogle Scholar
  47. 47.
    Fisher GB, Gland JL (1980) Surf Sci 94:446–455CrossRefGoogle Scholar
  48. 48.
    Pacia N, Cassuto A, Pentenero A, Weber B (1976) J Catal 41:455–465CrossRefGoogle Scholar
  49. 49.
    Zafiris GS, Gorte RJ (1993) J Catal 140:418–423CrossRefGoogle Scholar
  50. 50.
    Hickman DA, Schmidt LD (1993) AIChE J 39:1164–1177CrossRefGoogle Scholar
  51. 51.
    Anton AB, Cadogan DC (1991) J Vac Sci Technol A 9:1890–1897CrossRefGoogle Scholar
  52. 52.
    Deutschmann O, Schmidt R, Behrendt F, Warnat J (1996) Sympos (Int) Combust 26:1747–1754CrossRefGoogle Scholar
  53. 53.
    Williams WR, Marks CM, Schmidt LD (1992) J Phys Chem 96:5922–5931CrossRefGoogle Scholar
  54. 54.
    Torkashvand B, Maier L, Hettel M, Schedlbauer T, Grunwaldt J-D, Deutschmann O (2018) Chem Eng Sci.  https://doi.org/10.1016/j.ces.2018.10.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bentolhoda Torkashvand
    • 1
  • Lubow Maier
    • 2
  • Patrick Lott
    • 1
  • Thomas Schedlbauer
    • 1
  • Jan-Dierk Grunwaldt
    • 1
    • 2
  • Olaf Deutschmann
    • 1
    • 2
    Email author
  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations