Advertisement

The Development of a N2O Abatement Catalyst: from Laboratory Scale to Plant Testing

  • Øystein Nirisen
  • David Waller
  • David M. Brackenbury
Original Paper
  • 9 Downloads

Abstract

Nitrous oxide is a powerful greenhouse gas with a global warming potential stated to be between 265 and 310. The production of nitric acid is the largest source of nitrous oxide from the chemical process industries, and it equates to circa 50% of the total greenhouse gas emissions from nitric acid production. This paper describes the successful development of a catalyst for the decomposition of nitrous oxide in the ammonia burner, from laboratory, pilot and plant-scale testing. This catalyst is capable of reducing nitrous oxide emissions by more than 90%, with no significant modifications to plant operation.

Keywords

N2Nitric acid Emissions Catalyst 

Notes

Acknowledgements

The core team for the project included David Waller, Øystein Nirisen, David M. Brackenbury, Arne Øygarden, Camilla Otterlei, Toril Schelderup, Per Ivar Karlsen, Magne Slåen and Klaus Schøffel.

References

  1. 1.
    Gubler R, He X, Suresh B, Yamaguchi Y (2014) Nitric acid. Chemical economics handbook. IHS Chemical, LondonGoogle Scholar
  2. 2.
    Thiemann M, Scheibler E, Wiegand KW (2003) Ullmann’s Encyclopedia of Industrial Chemistry, nitric acid, nitrous acid, and nitrogen oxides, 6th edn, vol 23. Wiley-VCH, Hoboken, pp. 1–49Google Scholar
  3. 3.
    Hatscher ST et al (2008) Ammonia oxidation. Handbook of heterogeneous catalysis, vol 5. Wiley, New York, pp 2575–2592.Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Perez-Ramirez J, Kapteijn F, Schøffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production: where do we stand today? Appl Catal B 44:117–151CrossRefGoogle Scholar
  7. 7.
    Kapteijn F. Rodriguez-mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9:25–64CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Wolf F, Gill M (2015) Development of an advanced cobalt catalyst for nitric acid production. In: 2015 ANNA conferenceGoogle Scholar
  10. 10.
    Fareid E, Kongshaug G, Hjornevik L, Nirsen Ø. (1993) EP 0359286Google Scholar
  11. 11.
  12. 12.
    Hallan T, Nirisen Ø, Schøffel K, Waller D (2001) Abatement of nitrous oxide from nitric acid production, NOXCONF 2001. In: International conference on industrial atmospheric pollution, NOx and N2O emission control: panel of available techniquesGoogle Scholar
  13. 13.
    Cimina A, Stone FS (2002) Oxide solid solutions as catalysts. Adv Catal 47:141–306Google Scholar
  14. 14.
    Hinshelwood CN, Pritchard CR (1925) J Chem Soc 127:327CrossRefGoogle Scholar
  15. 15.
    Schwab G, Staeger RZ (1934) Phys Chem B 25:418Google Scholar
  16. 16.
    Wagner C, Hauffe K (1938) Z Elektrochem 44:172Google Scholar
  17. 17.
    Swamy CS, Chrisopher J (1992) Catal Rev 34:409CrossRefGoogle Scholar
  18. 18.
    Armor JN, Braymer TA, Farris TS, Li Y, Petrocelli FP, Weist EL, Kannan S, Swamy CS (1996) Appl Catal B 7:397CrossRefGoogle Scholar
  19. 19.
    Cimino A, Stone FS (1997) Handbook of heterogeneous catalysis, vol 2. Wiley, Weinheim, p 845Google Scholar
  20. 20.
    Kawada H, Sakai N, Yokakawa H, Dokiya M (1992) Solid State Ion 53–56:418CrossRefGoogle Scholar
  21. 21.
    Colon G, Botta SG, Litter MI (2001) Langmuir 17:202CrossRefGoogle Scholar
  22. 22.
    Rath PP, Parhi PK, Panda SR, Priyadarshini B, Sahoo TR (2017) In: IOP conference series materials science and engineering, vol 225Google Scholar
  23. 23.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications, Chap. 4. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Waller D, Sirman JD, Kilner JA (1997) In: Proceedings of the fifth international symposium on solid oxide fuel cells (SOFC V), pp 1140–1149Google Scholar
  25. 25.
    Sirman JD, Waller D, Kilner JA (1999) In: Proceedings of the fifth international symposium on solid oxide fuel cells (SOFC V), pp 1159–1168Google Scholar
  26. 26.
    Chen M. Hallstedt B, Grundy AN, Gaukler L (2003) J Am Ceram Soc 86:1567CrossRefGoogle Scholar
  27. 27.
    Øygarden A, Perez-Ramirez J, Waller D, Schøffel K (2004) WO 2004/110622 A1Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Øystein Nirisen
    • 1
  • David Waller
    • 1
  • David M. Brackenbury
    • 1
  1. 1.Yara International ASA, Yara Technology CentrePorsgrunnNorway

Personalised recommendations