Topics in Catalysis

, Volume 61, Issue 20, pp 2103–2113 | Cite as

Various spectroelectrochemical cells for in situ observation of electrochemical processes at solid–liquid interfaces

  • Takuya MasudaEmail author
Original Article


In the last several decades, a variety of surface analysis techniques which can probe the geometric/electronic/molecular structures of the interfaces, as well as the elemental composition, have been developed and applied for the investigation of electrochemical processes taking place at solid–liquid interfaces. Designing spectroelectrochemical cells is one of the big challenges for utilization of those techniques to a variety of electrochemical interfaces because the thickness of solution layers, materials used as a window, geometry of the photon source, sample, and spectrometer/analyzer/detector need to be optimal for the electrochemical reaction of interest and photons used in the individual techniques. To date, various unique spectroelectrochemical cells have been used for in situ electrochemical studies on interfacial processes even by using the techniques which intrinsically require vacuum. In this paper, recent progress on in situ spectroelectrochemical cells, especially used for X-ray photoelectron spectroscopy, is reviewed.


Solid–liquid interfaces Spectroelectrochemical cells In situ measurements X-ray photoelectron spectroscopy 



The present work was partially supported by the Development of Environmental Technology using Nanotechnology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. T.M. acknowledges the Japan Science and Technology Agency, PRESTO, for financial support. Synchrotron radiation experiments were performed as projects approved by the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2011B4609, 2012A4611, 2012B4605, 2013B3601, and 2013B4601).


  1. 1.
    Masuda T, Uosaki K (2017) Chap. 6. Novel In Situ Techniques. In: Uosaki K (ed) Electrochemical Science for a Sustainable Society A Tribute to J. O’M Bockris. Springer International Publishing, Switzerland, pp 147–174Google Scholar
  2. 2.
    Uosaki K (2015) In situ real-time monitoring of geometric, electronic, and molecular structures at solid/liquid interfaces. Jpn J Appl Phys 54:030102Google Scholar
  3. 3.
    Abruña HD, Interfaces E (1991) Modern Techniques for In-situ Interface Characterization. VCH Publishers, New York-Weinheim-CambridgeGoogle Scholar
  4. 4.
    Lipkowski J, Ross PN (1992) Adsorption of Molecules at Metal Electrodes. Frontiers of Electrochemistry. VCH Publishers, New York-Weinheim-CambridgeGoogle Scholar
  5. 5.
    Lipkowski J, Ross PN (1993) Structure of Electrified Interfaces. Frontiers of Electrochemistry. VCH Publishers, New York-Weinheim-CambridgeGoogle Scholar
  6. 6.
    Wieckowski A (1999) Interfacial Electrochemistry: Experimental, Theory and Applications. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Itkis DM, Velasco-Velez JJ, Knop-Gericke A, Vyalikh A, Avdeev MV, Yashina LV (2015) Probing Operating Electrochemical Interfaces by Photons Neutrons Chemelectrochem 2:1427–1445Google Scholar
  8. 8.
    Masuda T, Kondo T, Uosaki K (2016) Chap. 31. Solid–liquid Interfaces. In: Iwasawa Y, Asakura K, Tada M (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer International Publishing, Switzerland, pp 505–525Google Scholar
  9. 9.
    Kondo T, Masuda T, Uosaki K (2016) Chap. 7. In: Situ SXS and XAFS Measurements of Electrochemical Interface. In: Kumar CSSR (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer-Verlag, Berlin Heidelberg, pp 367–449Google Scholar
  10. 10.
    Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinruck HP, Licence P (2010) Photoelectron Spectroscopy of Ionic Liquid-Based Interfaces. Chem Rev 110:5158–5190PubMedGoogle Scholar
  11. 11.
    Starr DE, Liu Z, Havecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42:5833–5857PubMedGoogle Scholar
  12. 12.
    Crumlin EJ, Liu Z, Bluhm H, Yang WL, Guo JH, Hussain Z (2015) X-ray spectroscopy of energy materials under in situ/operando conditions. J Electron Spectrosc Relat Phenom 200:264–273Google Scholar
  13. 13.
    Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y (2015) Insights into Electrochemical Reactions from Ambient Pressure Photoelectron Spectroscopy. Acc Chem Res 48:2976–2983PubMedGoogle Scholar
  14. 14.
    Trotochaud L, Head AR, Karslioglu O, Kyhl L, Bluhm H (2017) Ambient pressure photoelectron spectroscopy: practical considerations and experimental frontiers. J Phys Condens Matter 29:053002PubMedGoogle Scholar
  15. 15.
    Wu CH, Weatherup RS, Salmeron MB (2015) Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Phys Chem Chem Phys 17:30229–30239PubMedGoogle Scholar
  16. 16.
    Kolmakov A, Gregoratti L, Kiskinova M, Gunther S (2016) Recent Approaches for Bridging the Pressure Gap in Photoelectron Microspectroscopy. Top Catal 59:448–468Google Scholar
  17. 17.
    Liu XH, Liu Y, Kushima A, Zhang SL, Zhu T, Li J, Huang JY (2012) In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Adv Energy Mater 2:722–741Google Scholar
  18. 18.
    Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan HY, Qi LA, Kushima A, Li J (2010) In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode. Science 330:1515–1520PubMedGoogle Scholar
  19. 19.
    Holtz ME, Yu YC, Gunceler D, Gao J, Sundararaman R, Schwarz KA, Arias TA, Abruña HD, Muller DA (2014) Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte. Nano Lett 14:1453–1459PubMedGoogle Scholar
  20. 20.
    Zeng ZY, Liang WI, Liao HG, Xin HLL, Chu YH, Zheng HM (2014) Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett 14:1745–1750PubMedGoogle Scholar
  21. 21.
    Gu M, Parent LR, Mehdi BL, Unocic RR, McDowell MT, Sacci RL, Xu W, Connell JG, Xu PH, Abellan P, Chen XL, Zhang YH, Perea DE, Evans JE, Lauhon LJ, Zhang JG, Liu J, Browning ND, Cui Y, Arslan I, Wang CM (2013) Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes. Nano Lett 13:6106–6112PubMedGoogle Scholar
  22. 22.
    Wu F, Yao N (2015) Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy 11:196–210Google Scholar
  23. 23.
    Bewick A, Kunimatsu K, Pons BS, Russell JW (1984) Electrochemically Modulated Infrared-Spectroscopy (EMIRS) - Experimental Details. J Electroanal Chem 160:47–61Google Scholar
  24. 24.
    Ataka K, Yotsuyanagi T, Osawa M (1996) Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J Phys Chem 100:10664–10672Google Scholar
  25. 25.
    Iwasawa Y (1996) X-ray Absorption Fine Structure for Catalyst and Surfaces. World Scientific, SingaporeGoogle Scholar
  26. 26.
    Masuda T, Uosaki K (2017) In situ determination of electronic structure at solid/liquid interfaces. J Electron Spectrosc Relat Phenom 221:88–98Google Scholar
  27. 27.
    Gorlin Y, Lassalle-Kaiser B, Benck JD, Gul S, Webb SM, Yachandra VK, Yano J, Jaramillo TF (2013) In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. J Am Chem Soc 135:8525–8534PubMedGoogle Scholar
  28. 28.
    Velasco-Velez JJ, Wu CH, Wang BY, Sun Y, Zhang Y, Guo JH, Salmeron M (2014) Polarized X-ray Absorption Spectroscopy Observation of Electronic and Structural Changes of Chemical Vapor Deposition Graphene in Contact with Water. J Phys Chem C 118:25456–25459Google Scholar
  29. 29.
    Velasco-Velez JJ, Wu CH, Pascal TA, Wan LWF, Guo JH, Prendergast D, Salmeron M (2014) The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346:831–834PubMedGoogle Scholar
  30. 30.
    Seidel R, Pohl MN, Ali H, Winter B, Aziz EF (2017) Advances in liquid phase soft-X-ray photoemission spectroscopy: a new experimental setup at BESSY II. Rev Sci Instrum 88:073107PubMedGoogle Scholar
  31. 31.
    Tokushima T, Horikawa Y, Harada Y, Takahashi O, Hiraya A, Shin S (2009) Selective observation of the two oxygen atoms at different sites in the carboxyl group (-COOH) of liquid acetic acid. Phys Chem Chem Phys 11:1679–1682PubMedGoogle Scholar
  32. 32.
    Niwa H, Kiuchi H, Miyawaki J, Harada Y, Oshima M, Nabae Y, Aoki T (2013) Operando soft X-ray emission spectroscopy of iron phthalocyanine-based oxygen reduction catalysts. Electrochem Commun 35:57–60Google Scholar
  33. 33.
    Harada Y, Tokushima T, Horikawa Y, Takahashi O, Niwa H, Kobayashi M, Oshima M, Senba Y, Ohashi H, Wikfeldt KT, Nilsson A, Pettersson LGM, Shin S (2013) Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Phys Rev Lett 111:193001PubMedGoogle Scholar
  34. 34.
    Asakura D, Nanba Y, Okubo M, Mizuno Y, Niwa H, Oshima M, Zhou HS, Okada K, Harada Y (2014) Distinguishing between High- and Low-Spin States for Divalent Mn in Mn-Based Prussian Blue Analogue by High-Resolution Soft X-ray Emission Spectroscopy. J Phys Chem Lett 5:4008–4013PubMedGoogle Scholar
  35. 35.
    Nagasaka M, Yuzawa H, Horigome T, Hitchcock AP, Kosugi N (2013) Electrochemical Reaction of Aqueous Iron Sulfate Solutions Studied by Fe L-Edge Soft X-ray Absorption Spectroscopy. J Phys Chem C 117:16343–16348Google Scholar
  36. 36.
    Nagasaka M, Yuzawa H, Horigome T, Kosugi N (2014) In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method. Rev Sci Instrum 85:104105PubMedGoogle Scholar
  37. 37.
    Kotz R (1990) Photoelectron Spectroscopy of Practical Electrode Material. In: Gerischer H, Tobias CW (eds) Advances in Electrochemical Science and Engineering, vol 1. VCH Publishers Inc., New York, pp 76–123Google Scholar
  38. 38.
    Vericat C, Wakisaka M, Haasch R, Bagus PS, Wieckowski A (2004) Binding energy of ruthenium submonolayers deposited on a Pt(111) electrode. J Solid State Electrochem 8:794–803Google Scholar
  39. 39.
    Mayer T, Lebedev M, Hunger R, Jaegermann W (2005) Elementary processes at semiconductor/electrolyte interfaces: Perspectives and limits of electron spectroscopy. Appl Surf Sci 252:31–42Google Scholar
  40. 40.
    Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt-Co and Pt-Ru alloys for Co-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J Phys Chem B 110:23489–23496PubMedGoogle Scholar
  41. 41.
    Wakisaka M, Udagawa Y, Suzuki H, Uchida H, Watanabe M (2011) Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by X-ray photoelectron spectroscopy. Energy Environ Sci 4:1662–1666Google Scholar
  42. 42.
    Lebedev MV, Calvet W, Kaiser B, Jaegermann W (2017) Synchrotron Photoemission Spectroscopy Study of p-GaInP2(100) Electrodes Emersed from Aqueous HCI Solution under Cathodic Conditions. J Phys Chem C 121:8889–8901Google Scholar
  43. 43.
    Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum 73:3872–3877Google Scholar
  44. 44.
    Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199Google Scholar
  45. 45.
    Ketteler G, Ogletree DF, Bluhm H, Liu HJ, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127:18269–18273PubMedGoogle Scholar
  46. 46.
    Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr DE, Schiros T, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111:7848–7850Google Scholar
  47. 47.
    Porsgaard S, Jiang P, Borondics F, Wendt S, Liu Z, Bluhm H, Besenbacher F, Salmeron M (2011) Charge State of Gold Nanoparticles Supported on Titania under Oxygen Pressure. Angew Chem Int Ed 50:2266–2269Google Scholar
  48. 48.
    Shimada T, Mun BS, Nakai IF, Banno A, Abe H, Iwasawa Y, Ohta T, Kondoh H (2010) Irreversible Change in the NO Adsorption State on Pt(111) under High Pressure Studied by AP-XPS, NEXAFS, and STM. J Phys Chem C 114:17030–17035Google Scholar
  49. 49.
    Zhang CJ, Grass ME, McDaniel AH, DeCaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne MA, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat Mater 9:944–949PubMedGoogle Scholar
  50. 50.
    Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions. Sci Rep 2:715PubMedPubMedCentralGoogle Scholar
  51. 51.
    Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun BS, Mase K, Amemiya K, Kondoh H (2012) In Situ Ambient Pressure XPS Study of CO Oxidation Reaction on Pd(111) Surfaces. J Phys Chem C 116:18691–18697Google Scholar
  52. 52.
    Nemsak S, Shavorskiy A, Karslioglu O, Zegkinoglou I, Rattanachata A, Conlon CS, Keqi A, Greene PK, Burks EC, Salmassi F, Gullikson EM, Yang SH, Liu K, Bluhm H, Fadley CS (2014) Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat Commun 5:5441PubMedGoogle Scholar
  53. 53.
    Trotochaud L, Tsyshevsky R, Holdren S, Fears K, Head AR, Yu Y, Karshoglu O, Pletincx S, Eichhorn B, Owrutsky J, Long J, Zachariah M, Kuklja MM, Bluhm H (2017) Spectroscopic and computational investigation of room-temperature decomposition of a chemical warfare agent simulant on polycrystalline cupric oxide. Chem Mater 29:7483–7496Google Scholar
  54. 54.
    Karslioglu O, Nemsak S, Zegkinoglou I, Shavorskiy A, Hartl M, Salmassi F, Gullikson EM, Ng ML, Rameshan C, Rude B, Bianculli D, Cordones AA, Axnanda S, Crumlin EJ, Ross PN, Schneider CM, Hussain Z, Liu Z, Fadley CS, Bluhm H (2015) Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss 180:35–53PubMedGoogle Scholar
  55. 55.
    Axnanda S, Crumlin EJ, Mao BH, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid–liquid Interface. Sci Rep 5:9788PubMedPubMedCentralGoogle Scholar
  56. 56.
    Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, Liu Z, Crumlin EJ (2016) Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Commun 7:12695PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Mayer T, Brunschwig BS, Lewis NS, Liu Z, Lewerenz HJ (2015) Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ Sci 8:2409–2416Google Scholar
  58. 58.
    Lichterman MF, Richter MH, Hu S, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Brunschwig BS, Lewis NS, Liu Z, Lewerenz HJ (2016) An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO2/Ni/Electrolyte Interfaces. J Electrochem Soc 163:H139–H146Google Scholar
  59. 59.
    Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D, Hansen HA, Nørskov JK, Nilsson A, Ogasawara H (2013) Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat Commun 4:2817Google Scholar
  60. 60.
    Arrigo R, Hävecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlögl R (2013) In Situ Study of the Gas-Phase Electrolysis of Water on Platinum by NAP-XPS. Angew. Chem Int Ed 52:11660–11664Google Scholar
  61. 61.
    Takagi Y, Wang H, Uemura Y, Ikenaga E, Sekizawa O, Uruga T, Ohashi H, Senba Y, Yumoto H, Yamazaki H, Goto S, Tada M, Iwasawa Y, Yokoyama T (2014) In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy. Appl Phys Lett 105:131602Google Scholar
  62. 62.
    Takagi Y, Wang H, Uemura Y, Nakamura T, Yu LW, Sekizawa O, Uruga T, Tada M, Samjeske G, Iwasawa Y, Yokoyama T (2017) In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy. Phys Chem Chem Phys 19:6013–6021PubMedGoogle Scholar
  63. 63.
    Takagi Y, Nakamura T, Yu LW, Chaveanghong S, Sekizawa O, Sakata T, Uruga T, Tada M, Iwasawa Y, Yokoyama T (2017) X-ray photoelectron spectroscopy under real ambient pressure conditions. Appl Phys Express 10:076603Google Scholar
  64. 64.
    Doh WH, Gregoratti L, Amati M, Zafeiratos S, Law YT, Neophytides SG, Orfanidi A, Kiskinova M, Savinova ER (2014) Scanning Photoelectron Microscopy Study of the Pt/Phosphoric-Acid-Imbibed Membrane Interface under Polarization. Chemelectrochem 1:180–186Google Scholar
  65. 65.
    Law YT, Zafeiratos S, Neophytides SG, Orfanidi A, Costa D, Dintzer T, Arrigo R, Knop-Gericke A, Schlogld R, Savinova ER (2015) In situ investigation of dissociation and migration phenomena at the Pt/electrolyte interface of an electrochemical cell. Chem Sci 6:5635–5642PubMedPubMedCentralGoogle Scholar
  66. 66.
    Saveleva VA, Papaefthimiou V, Daletou MK, Doh WH, Ulhaq-Bouillet C, Diebold M, Zafeiratos S, Savinova ER (2016) Operando Near Ambient Pressure XPS (NAP-XPS) Study of the Pt Electrochemical Oxidation in H2O and H2O/O-2 Ambients. J Phys Chem C 120:15930–15940Google Scholar
  67. 67.
    Johnston M, Lee JJ, Chottiner GS, Miller B, Tsuda T, Hussey CL, Scherson DA (2005) Electrochemistry in ultrahigh vacuum: Underpotential deposition of Al on polycrystalline W and Au from room temperature AlCl3/1-ethyl-3-methylimidazolium chloride melts. J Phys Chem B 109:11296–11300PubMedGoogle Scholar
  68. 68.
    Kuwabata S, Tsuda T, Torimoto T (2010) Room-Temperature Ionic Liquid. A New Medium for Material Production and Analyses under Vacuum Conditions. J Phys Chem Lett 1:3177–3188Google Scholar
  69. 69.
    Smith EF, Villar Garcia IJ, Briggs D, Licence P (2005) Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy. Chem Commun 5633–5635Google Scholar
  70. 70.
    Smith EF, Rutten FJM, Villar-Garcia IJ, Briggs D, Licence P (2006) Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques. Langmuir 22:9386–9392PubMedGoogle Scholar
  71. 71.
    Taylor AW, Qiu FL, Villar-Garcia IJ, Licence P (2009) Spectroelectrochemistry at ultrahigh vacuum: in situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy. Chem Commun 5817–5819Google Scholar
  72. 72.
    Qiu FL, Taylor AW, Men S, Villar-Garcia IJ, Licence P (2010) An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide. Phys Chem Chem Phys 12:1982–1990PubMedGoogle Scholar
  73. 73.
    Wibowo R, Aldous L, Jacobs RMJ, Manan NSA, Compton RG (2011) In situ electrochemical-X-ray Photoelectron Spectroscopy: Rubidium metal deposition from an ionic liquid in competition with solvent breakdown. Chem Phys Lett 517:103–107Google Scholar
  74. 74.
    Kolmakov A, Dikin DA, Cote LJ, Huang JX, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M (2011) Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol 6:651–657PubMedGoogle Scholar
  75. 75.
    Masuda T, Yoshikawa H, Noguchi H, Kawasaki T, Kobata M, Kobayashi K, Uosaki K (2013) In situ X-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Appl Phys Lett 103:111605Google Scholar
  76. 76.
    Kraus J, Reichelt R, Gunther S, Gregoratti L, Amati M, Kiskinova M, Yulaev A, Vlassiouk I, Kolmakov A (2014) Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 6:14394–14403PubMedGoogle Scholar
  77. 77.
    Velasco-Velez JJ, Pfeifer V, Havecker M, Weatherup RS, Arrigo R, Chuang CH, Stotz E, Weinberg G, Salmeron M, Schlogl R, Knop-Gericke A (2015) Photoelectron Spectroscopy at the Graphene-Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst. Angew Chem Int Ed 54:14554–14558Google Scholar
  78. 78.
    Nemšák S, Strelcov E, Duchoň T, Guo H, Hackl J, Yulaev A, Vlassiouk I, Mueller DN, Schneider CM, Kolmakov A (2017) Interfacial electrochemistry in liquids probed with photoemission electron microscopy. J Am Chem Soc 139:18138–18141PubMedPubMedCentralGoogle Scholar
  79. 79.
    Guo HX, Strelcov E, Yulaev A, Wang J, Appathurai N, Urquhart S, Vinson J, Sahu S, Zwolak M, Kolmakov A (2017) Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays. Nano Lett 17:1034–1041PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kobayashi K, Kobata M, Iwai H (2013) Development of a laboratory system hard X-ray photoelectron spectroscopy and its applications. J Electron Spectrosc Relat Phenom 190:210–221Google Scholar
  81. 81.
    Tsunemi E, Watanabe Y, Oji H, Cui YT, Son JY, Nakajima A (2015) Hard X-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows. J Appl Phys 117:234902Google Scholar
  82. 82.
    Velasco-Velez JJ, Pfeifer V, Havecker M, Wang R, Centeno A, Zurutuza A, Algara-Siller G, Stotz E, Skorupska K, Teschner D, Kube P, Braeuninger-Weimer P, Hofmann S, Schlogl R, Knop-Gericke A (2016) Atmospheric pressure X-ray photoelectron spectroscopy apparatus: bridging the pressure gap. Rev Sci Instrum 87:053121PubMedGoogle Scholar
  83. 83.
    Weatherup RS, Eren B, Hao YB, Bluhm H, Salmeron MB (2016) Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy. J Phys Chem Lett 7:1622–1627PubMedGoogle Scholar
  84. 84.
    Ma T, Miyazaki K, Ariga H, Takakusagi S, Asakura K (2015) Investigation of the Cleanliness of Transferred Graphene: The First Step toward Its Application as a Window Material for Electron Microscopy and Spectroscopy. Bull Chem Soc Jpn 88:1029–1035Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Advanced Measurement and CharacterizationNational Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN)National Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations