Advertisement

In Aqua Electrochemistry Probed by XPEEM: Experimental Setup, Examples, and Challenges

  • Slavomír Nemšák
  • Evgheni Strelcov
  • Hongxuan Guo
  • Brian D. Hoskins
  • Tomáš Duchoň
  • David N. Mueller
  • Alexander Yulaev
  • Ivan Vlassiouk
  • Alexander Tselev
  • Claus M. Schneider
  • Andrei Kolmakov
Original Article
  • 12 Downloads

Abstract

Recent developments in environmental and liquid cells equipped with electron transparent graphene windows have enabled traditional surface science spectromicroscopy tools, such as scanning X-ray photoelectron microscopy, X-ray photoemission electron microscopy (XPEEM), and scanning electron microscopy to be applied for studying solid–liquid and liquid–gas interfaces. Here, we focus on the experimental implementation of XPEEM to probe electrified graphene–liquid interfaces using electrolyte-filled microchannel arrays as a new sample platform. We demonstrate the important methodological advantage of these multi-sample arrays: they combine the wide field of view hyperspectral imaging capabilities from XPEEM with the use of powerful data mining algorithms to reveal spectroscopic and temporal behaviors at the level of the individual microsample or the entire array ensemble.

Keywords

XPEEM Multichannel arrays In situ Electrochemistry Multivariate statistical analysis 

Notes

Acknowledgements

E.S., H.G., A.Y. acknowledge support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB14H209, through the University of Maryland. Heinz Pfeifer of Forschungszentrum Juelich and Jiri Libra of kolibrik.net were instrumental in the development of electrical devices and sample holders used in this publication. AT acknowledges CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013) financed by national funds through the FCT/MEC and, when applicable, co-financed by FEDER under the PT2020 Partnership Agreement. Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

References

  1. 1.
    Zaera F (2012) Probing liquid/solid interfaces at the molecular level. Chem Rev 112(5):2920–2986CrossRefGoogle Scholar
  2. 2.
    Wu CH, Weatherup RS, Salmeron MB (2015) Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Phys Chem Chem Phys 17(45):30229–30239CrossRefGoogle Scholar
  3. 3.
    Velasco-Velez J-J et al (2014) The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science  https://doi.org/10.1126/science.1259437 CrossRefPubMedGoogle Scholar
  4. 4.
    Nemšák S et al (2014) Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat Commun 5:5441CrossRefGoogle Scholar
  5. 5.
    Karsloglu O et al (2015) Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss 180(0):35–53CrossRefGoogle Scholar
  6. 6.
    Favaro M et al (2016) Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Commun 7:12695CrossRefGoogle Scholar
  7. 7.
    Kubo A et al (2007) Femtosecond microscopy of localized and propagating surface plasmons in silver gratings. J Phys B 40(11):S259–S272CrossRefGoogle Scholar
  8. 8.
    Lichterman MF et al (2017) Operando X-ray photoelectron spectroscopic investigations of the electrochemical double layer at Ir/KOH (aq) interfaces. J Electron Spectrosc Relat Phenom 221:99–105CrossRefGoogle Scholar
  9. 9.
    Brown MA et al (2013) Measure of surface potential at the aqueous–oxide nanoparticle interface by XPS from a liquid microjet. Nano Lett 13(11):5403–5407CrossRefGoogle Scholar
  10. 10.
    Bauer E (2012) A brief history of PEEM. J Electron Spectrosc Relat Phenom 185(10):314–322CrossRefGoogle Scholar
  11. 11.
    Locatelli A, Bauer E (2008) Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J Phys 20:093002Google Scholar
  12. 12.
    Rotermund HH et al (1991) Methods and application of UV photoelectron microscopy in heterogeneous catalysis. Ultramicroscopy 36(1–3):164–172CrossRefGoogle Scholar
  13. 13.
    Stasio GD et al (2000) Feasibility tests of transmission X-ray photoelectron emission microscopy of wet samples. Rev Sci Instrum 71(1):11–14CrossRefGoogle Scholar
  14. 14.
    Cinchetti M et al (2005) Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys Rev Lett 95(4):047601CrossRefGoogle Scholar
  15. 15.
    Zamborlini G et al (2015) Nanobubbles at GPa pressure under graphene. Nano Lett 15(9):6162–6169CrossRefGoogle Scholar
  16. 16.
    Guo H et al (2017) Enabling photoemission electron microscopy in liquids via graphene-capped microchannel arrays. Nano Lett 17(2):1034–1041CrossRefGoogle Scholar
  17. 17.
    Siegrist K et al (2004) Imaging buried structures with photoelectron emission microscopy. Appl Phys Lett 84(8):1419–1421CrossRefGoogle Scholar
  18. 18.
    De la Pena F et al (2010) Full field chemical imaging of buried native sub-oxide layers on doped silicon patterns. Surf Sci 604(19):1628–1636CrossRefGoogle Scholar
  19. 19.
    Patt M et al (2014) Bulk sensitive hard X-ray photoemission electron microscopy. Rev Sci Instrum 85(11):113704CrossRefGoogle Scholar
  20. 20.
    Kraus J et al (2014) Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 6(23):14394–14403CrossRefGoogle Scholar
  21. 21.
    Weatherup RS et al (2016) Graphene membranes for atmospheric pressure photoelectron spectroscopy. J Phys Chem Lett 7(9):1622–1627CrossRefGoogle Scholar
  22. 22.
    Stoll JD, Kolmakov A (2012) Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology 23(50):505704CrossRefGoogle Scholar
  23. 23.
    Kolmakov A et al (2011) Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol 6(10):651–657CrossRefGoogle Scholar
  24. 24.
    Velasco-Velez JJ et al (2015) Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew Chem Int Ed 54(48):14554–14558CrossRefGoogle Scholar
  25. 25.
    Kolmakov A et al (2016) Recent approaches for bridging the pressure gap in photoelectron microspectroscopy. Top Catal 59(5–7):448–468CrossRefGoogle Scholar
  26. 26.
    Cinchetti M et al (2006) Spin-flip processes and ultrafast magnetization dynamics in Co: unifying the microscopic and macroscopic view of femtosecond magnetism. Phys Rev Lett 97(17):177201CrossRefGoogle Scholar
  27. 27.
    Shinotsuka H et al (2015) Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV–200 keV range with the relativistic full Penn algorithm. Surf Interface Anal 47(9):871–888CrossRefGoogle Scholar
  28. 28.
    Emfietzoglou D, Nikjoo H (2007) Accurate Electron inelastic cross sections and stopping powers for liquid water over the 0.1–10 keV range based on an improved dielectric description of the bethe surface. Radiat Res 167(1):110–120CrossRefGoogle Scholar
  29. 29.
    Masuda T et al (2013) In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Appl Phys Lett 103(11):111605–111605CrossRefGoogle Scholar
  30. 30.
    Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  31. 31.
    Yulaev A et al (2017) Graphene-capped multichannel arrays for combinatorial electron microscopy and spectroscopy in liquids. ACS Appl Mater Interfaces 9(31):26492–26502CrossRefGoogle Scholar
  32. 32.
    Santos EJ, Kaxiras E (2013) Electric-field dependence of the effective dielectric constant in graphene. Nano Lett 13(3):898–902CrossRefGoogle Scholar
  33. 33.
    Kuroda MA, Tersoff J, Martyna GJ (2011) Nonlinear screening in multilayer graphene systems. Phys Rev Lett 106(11):116804CrossRefGoogle Scholar
  34. 34.
    Kalinin SV et al (2016) Big, deep, and Smart data in scanning probe microscopy. ACS Nano 10(10):9068–9086CrossRefGoogle Scholar
  35. 35.
    Dobigeon N et al (2009) Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans Signal Process 57(11):4355–4368CrossRefGoogle Scholar
  36. 36.
    Dobigeon N, Brun N (2012) Spectral mixture analysis of EELS spectrum-images. Ultramicroscopy 120:25–34CrossRefGoogle Scholar
  37. 37.
    Strelcov E et al (2014) Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. ACS Nano 8(6):6449–6457CrossRefGoogle Scholar
  38. 38.
    Reddington E (1998) Combinatorial Electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280(5370):1735–1737CrossRefGoogle Scholar
  39. 39.
    McGinn PJ (2015) Combinatorial electrochemistry—processing and characterization for materials discovery. Mater Discov 1:38–53CrossRefGoogle Scholar
  40. 40.
    Muster TH et al (2011) A review of high throughput and combinatorial electrochemistry. Electrochim Acta 56(27):9679–9699CrossRefGoogle Scholar
  41. 41.
    Nemšák S et al (2017) Interfacial electrochemistry in liquids probed with photoemission electron microscopy. JACS 139(50):18138–18141CrossRefGoogle Scholar
  42. 42.
    Strelcov E et al (2015) Constraining data mining with physical models: voltage- and oxygen pressure-dependent transport in multiferroic nanostructures. Nano Lett 15(10):6650–665CrossRefGoogle Scholar
  43. 43.
    Velasco Vélez JJ et al (2017) The electro-deposition/dissolution of CuSO4 aqueous electrolyte investigated by in situ soft x-ray absorption spectroscopy. J Phys Chem B 122(2):780−787CrossRefGoogle Scholar
  44. 44.
    Mueller DN et al (2015) Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat Commun 6:6097CrossRefGoogle Scholar
  45. 45.
    Nenning A et al (2016) Ambient pressure XPS study of mixed conducting perovskite-type SOFC cathode and anode materials under well-defined electrochemical polarization. J Phys Chem C 120(3):1461–1471CrossRefGoogle Scholar
  46. 46.
    Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976CrossRefGoogle Scholar
  47. 47.
    Weatherup RS et al (2017) Environment-dependent radiation damage in atmospheric pressure X-ray spectroscopy. J Phys Chem B 122(2):737–744CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Slavomír Nemšák
    • 1
    • 7
  • Evgheni Strelcov
    • 2
    • 3
  • Hongxuan Guo
    • 2
    • 3
  • Brian D. Hoskins
    • 2
  • Tomáš Duchoň
    • 1
    • 4
  • David N. Mueller
    • 1
  • Alexander Yulaev
    • 2
    • 3
  • Ivan Vlassiouk
    • 5
  • Alexander Tselev
    • 6
  • Claus M. Schneider
    • 1
    • 7
  • Andrei Kolmakov
    • 2
  1. 1.Peter-Grünberg-Institut 6Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Center for Nanoscale Science and TechnologyNISTGaithersburgUSA
  3. 3.Maryland NanoCenterUniversity of MarylandCollege ParkUSA
  4. 4.Department of Surface and Plasma Science, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  5. 5.Oak Ridge National LaboratoryOak RidgeUSA
  6. 6.CICECO-Aveiro Institute of Materials and Department of PhysicsUniversity of AveiroAveiroPortugal
  7. 7.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations