Topics in Catalysis

, Volume 61, Issue 14, pp 1485–1490 | Cite as

Continuous Wave and Pulse EPR Characterization of Open-Shell Ti3+ Ions Generated in Hybrid SiO2–TiO2 Monoliths

  • Elena Morra
  • Andriy Budnyk
  • Alessandro Damin
  • Mario Chiesa
Original Paper


Open-shell Ti3+ ions are generated within hybrid SiO2–TiO2 mesoporous monoliths by reaction with triethylaluminium vapors. Continuous wave and 2D pulse electron paramagnetic resonance techniques are used to investigate the local coordination environment of the Ti3+ species through detection of hyperfine interactions of the unpaired electron with magnetically active nuclei of the matrix, including natural abundant framework 29Si. The results provide evidence for the reducing power of triethylaluminium towards isolated Ti4+ ions through the formation of open-shell Ti3+ ions atomically dispersed and fully incorporated in the SiO2 framework with a local structure similar to that of titanium silicalite and no segregation of TiO2 phases at this level of Ti doping.


EPR spectroscopy Open-shell Porous materials TS-1 


  1. 1.
    Dyrek K, Che M (1997) Chem Rev 97:305–332CrossRefPubMedGoogle Scholar
  2. 2.
    Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320–1347CrossRefPubMedGoogle Scholar
  3. 3.
    Morra E, Giamello E, Chiesa M (2017) J Magn Reson 280:89–102CrossRefPubMedGoogle Scholar
  4. 4.
    Van Doorslaer S, Murphy DM (2012) Top Curr Chem 321:1–39PubMedGoogle Scholar
  5. 5.
    Telser J, Krzystek J, Ozarowski A (2014) J Biol Inorg Chem 19:297–318CrossRefPubMedGoogle Scholar
  6. 6.
    Van Doorslaer S (2017) J Magn Reson 280:79–88CrossRefPubMedGoogle Scholar
  7. 7.
    Jeschke G (2016) eMagRes 5:1459–1475CrossRefGoogle Scholar
  8. 8.
    Spindler PE, Schöps P, Bowen AM, Endeward B, Prisner TF (2016) eMagRes 5:1477–1492CrossRefGoogle Scholar
  9. 9.
    Budnyk A, Damin A, Bordiga S, Zecchina A (2012) J Phys Chem C 116:10064–10072CrossRefGoogle Scholar
  10. 10.
    Notari B (1996) Adv Catal 41:253–334Google Scholar
  11. 11.
    Bordiga S, Bonino F, Damin A, Lamberti C (2007) Phys Chem Chem Phys 9:4854–4878CrossRefPubMedGoogle Scholar
  12. 12.
    Brozek CK, Dincă M (2013) J Am Chem Soc 135:12886–12891CrossRefPubMedGoogle Scholar
  13. 13.
    Morra E, Giamello E, Chiesa M (2014) Chem Eur J 20:7381–7388CrossRefPubMedGoogle Scholar
  14. 14.
    Maurelli S, Vishnuvarthan M, Chiesa M, Berlier G, Van Doorslaer S (2011) J Am Chem Soc 133:7340–7343CrossRefPubMedGoogle Scholar
  15. 15.
    Morra E, Maurelli S, Chiesa M, Giamello E (2015) Top Catal 58:783–795CrossRefGoogle Scholar
  16. 16.
    Kerber RN, Kermagoret A, Callens E, Florian P, Massiot D, Lesage A, Copéret C, Delbecq F, Rozanska X, Sautet P (2012) J Am Chem Soc 134:6767–6775CrossRefPubMedGoogle Scholar
  17. 17.
    Figgis BN (1967) John introduction to ligand fields. Wiley, New YorkGoogle Scholar
  18. 18.
    Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New YorkGoogle Scholar
  19. 19.
    Schweiger A, Jeschke G (2001) Principles of electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Pöppl A, Kevan L (1996) J Phys Chem 100:3387–3394CrossRefGoogle Scholar
  21. 21.
    Griffith JS (1964) The theory of transition-metal ions. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Solntsev VP, Yurkin AM (2000) Cryst Rep 45:128–132CrossRefGoogle Scholar
  23. 23.
    Zamani S, Meynen V, Hanu AM, Mertens M, Popovici E, Van Doorslaer S, Cool P (2009) Phys Chem Chem Phys 11:5823–5832CrossRefPubMedGoogle Scholar
  24. 24.
    Fitzpatrick JAJ, Manby FR, Western CM (2005) J Chem Phys 122:084312CrossRefGoogle Scholar
  25. 25.
    Höfer P, Grupp A, Nebenfür H, Mehring M (1986) Chem Phys Lett 132:279–282CrossRefGoogle Scholar
  26. 26.
    Stoll S, Schweiger A (2006) Magn Reson 178:42–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elena Morra
    • 1
  • Andriy Budnyk
    • 2
  • Alessandro Damin
    • 1
  • Mario Chiesa
    • 1
  1. 1.Dipartimento di Chimica & NIS CentreUniversità di TorinoTurinItaly
  2. 2.International Research Center “Smart materials”Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations