Advertisement

Topics in Catalysis

, Volume 61, Issue 14, pp 1424–1436 | Cite as

Hierarchical Porosity Tailoring of Sol–Gel Derived Pt/SiO2 Catalysts

  • Andrés Felipe Sierra-Salazar
  • André AyralEmail author
  • Tony Chave
  • Vasile Hulea
  • Sergey I. Nikitenko
  • Siglinda Perathoner
  • Patrick Lacroix-DesmazesEmail author
Original Paper
  • 124 Downloads

Abstract

Hierarchically porous materials offer the opportunity for catalyst development in regards to improving catalytic performances. In the present work, the combination of latex synthesis, sonochemical reduction and two-step catalysed sol–gel process has been demonstrated to be a versatile method for preparing supported catalysts with tailored hierarchical porosity. This method has been used to prepare porous Pt/SiO2 catalysts with mesopore and macropore size ranges as large as 2–15 nm and 90–400 nm, respectively. These hierarchically porous catalysts presented an excellent catalytic performance for the selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN). Selectivity values up to 100% at 80% conversion of p-CNB and initial reaction rates up to 74.0 molCNB/min molPt were obtained, while a commercial catalyst exhibited both a lower selectivity of 90.8% and a lower initial reaction rate of 47.7 molCNB/min molPt.

Keywords

Pt/SiO2 Hierarchical porosity Porosity tailoring Sol–gel Latex Sonochemistry p-Chloronitrobenzene p-Chloroaniline Selective hydrogenation 

Notes

Acknowledgements

This research was funded by SINCHEM Joint Doctorate Programme-Erasmus Mundus Action (Framework Agreement No. 2013-0037; Specific Grant Agreement No. 2014-0679 for PhD thesis of A. F. Sierra-Salazar). Special acknowledgments to: Didier Cot for the SEM images (Institut Européen des Membranes, France), Véronique Viguier for TEM sample preparation, Franck Godiard (Pôle Chimie Balard, Common Service of Electron Microscopy, France) for TEM images, Abdeslam El-Mansouri for mercury porosimetry and nitrogen adsorption–desorption (Institut Européen des Membranes, France), Radu-Dorin Andrei and Olinda Gimello for training on gas chromatography (Institut Charles Gerhardt, MACS team, France), Pascale Guiffrey for access to the calcination equipment (Institut Charles Gerhardt, AM2N team, France).

Supplementary material

11244_2018_1032_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1329 KB)

References

  1. 1.
    Wang Z, Hu P (2016) Towards rational catalyst design: a general optimization framework. Philos Trans R Soc A 374:20150078.  https://doi.org/10.1098/rsta.2015.0078 CrossRefGoogle Scholar
  2. 2.
    Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  3. 3.
    Davis ME, Davis RJ (2003) Fundamentals of chemical reaction engineering. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Parlett CMA, Wilson K, Lee AF (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev 42:3876–3893.  https://doi.org/10.1039/c2cs35378d CrossRefPubMedGoogle Scholar
  5. 5.
    Coppens M-O, Wang G (2009) Optimal design of hierarchically structured porous catalysts. In: Ozkan US (ed) Design of heterogeneous catalysts. Wiley, Weinheim, pp 25–58CrossRefGoogle Scholar
  6. 6.
    Wang G, Coppens MO (2010) Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem Eng Sci 65:2344–2351.  https://doi.org/10.1016/j.ces.2009.09.079 CrossRefGoogle Scholar
  7. 7.
    Coppens M-O, Sun J, Maschmeyer T (2001) Synthesis of hierarchical porous silicas with a controlled pore size distribution at various length scales. Catal Today 69:331–335.  https://doi.org/10.1016/S0920-5861(01)00386-8 CrossRefGoogle Scholar
  8. 8.
    Tanchoux N, Pariente S, Trens P, Fajula F (2009) Confinement and curvature effects as a tool for selectivity orientation in heterogeneous catalysis: isomerisation of n-hexene over MCM-41-type catalysts. J Mol Catal A 305:8–15.  https://doi.org/10.1016/j.molcata.2008.11.017 CrossRefGoogle Scholar
  9. 9.
    Zhao D, Wan Y, Zhou W (2013) Ordered mesoporous materials. Wiley, WeinheimCrossRefGoogle Scholar
  10. 10.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Elsevier, LondonGoogle Scholar
  11. 11.
    Ayral A, Julbe A, Rouessac V et al (2008) Microporous silica membrane: basic principles and recent advances. In: Mallada R, Menendez M (eds) Inorganic membranes: synthesis, characterization and applications. Elsevier, Amsterdam, pp 33–74CrossRefGoogle Scholar
  12. 12.
    Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol-gel transition in simple silicates. J Non Cryst Solids 48:47–64.  https://doi.org/10.1016/0022-3093(86)90119-5 CrossRefGoogle Scholar
  13. 13.
    Niu D, Ma Z, Li Y, Shi J (2010) Synthesis of core–shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc 132:15144–15147.  https://doi.org/10.1021/ja1070653 CrossRefPubMedGoogle Scholar
  14. 14.
    Nandiyanto ABD, Hagura N, Iskandar F, Okuyama K (2010) Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Mater 58:282–289.  https://doi.org/10.1016/j.actamat.2009.09.004 CrossRefGoogle Scholar
  15. 15.
    Nandiyanto ABD, Ogi T, Iskandar F, Okuyama K (2011) Highly ordered porous monolayer generation by dual-speed spin-coating with colloidal templates. Chem Eng J 167:409–415.  https://doi.org/10.1016/j.cej.2010.11.077 CrossRefGoogle Scholar
  16. 16.
    Balgis R, Ogi T, Arif AF et al (2015) Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon N Y 84:281–289.  https://doi.org/10.1016/j.carbon.2014.12.010 CrossRefGoogle Scholar
  17. 17.
    Nandiyanto ABD, Kim S-G, Iskandar F, Okuyama K (2009) Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater 120:447–453.  https://doi.org/10.1016/j.micromeso.2008.12.019 CrossRefGoogle Scholar
  18. 18.
    Bathfield M, Warnant J, Gérardin C, Lacroix-Desmazes P (2015) Asymmetric neutral, cationic and anionic PEO-based double-hydrophilic block copolymers (DHBCs): synthesis and reversible micellization triggered by temperature or pH. Polym Chem 6:1339–1349.  https://doi.org/10.1039/C4PY01502A CrossRefGoogle Scholar
  19. 19.
    Verissimo C, Alves OL (2006) Microstructural modifications in macroporous oxides prepared via latex templating: synthesis and thermal stability of porous microstructure. J Am Ceram Soc 89:2226–2231.  https://doi.org/10.1111/j.1551-2916.2006.00996.x CrossRefGoogle Scholar
  20. 20.
    Bosc F, Lacroix-Desmazes P, Ayral A (2006) TiO2 anatase-based membranes with hierarchical porosity and photocatalytic properties. J Colloid Interface Sci 304:545–548.  https://doi.org/10.1016/j.jcis.2006.09.064 CrossRefPubMedGoogle Scholar
  21. 21.
    Meng X, Duan L, Qin H et al (2014) A novel synthesis and characterization of ordered meso/macroporous alumina with hierarchical and adjustable pore size. J Nanosci Nanotechnol 14(5):7340–7344.  https://doi.org/10.1166/jnn.2014.9216 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee G, Jeong Y, Kim BG et al (2015) Hydrogen production by catalytic decalin dehydrogenation over carbon-supported platinum catalyst: effect of catalyst preparation method. Catal Commun 67:40–44.  https://doi.org/10.1016/j.catcom.2015.04.002 CrossRefGoogle Scholar
  23. 23.
    White RJ, Luque R, Budarin VL et al (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38:481–494.  https://doi.org/10.1039/b802654h CrossRefPubMedGoogle Scholar
  24. 24.
    Yacou C, Fontaine M-L, Ayral A et al (2008) One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route. J Mater Chem 18:4274–4279.  https://doi.org/10.1039/b807029f CrossRefGoogle Scholar
  25. 25.
    Chave T, Grunenwald A, Ayral A et al (2013) Sonochemical deposition of platinum nanoparticles on polymer beads and their transfer on the pore surface of a silica matrix. J Colloid Interface Sci 395:81–84.  https://doi.org/10.1016/j.jcis.2012.12.029 CrossRefPubMedGoogle Scholar
  26. 26.
    Chave T, Navarro NM, Nitsche S, Nikitenko SI (2012) Mechanism of Pt(IV) sonochemical reduction in formic acid media and pure water. Chem A Eur J 18:3879–3885.  https://doi.org/10.1002/chem.201102355 CrossRefGoogle Scholar
  27. 27.
    Sierra Salazar AF, Chave T, Ayral A et al (2016) Engineering of silica-supported platinum catalysts with hierarchical porosity combining latex synthesis, sonochemistry and sol-gel process—I. Material preparation. Microporous Mesoporous Mater 234:207–214.  https://doi.org/10.1016/j.micromeso.2016.07.009 CrossRefGoogle Scholar
  28. 28.
    Serna P, Corma A (2015) Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal 5:7114–7121.  https://doi.org/10.1021/acscatal.5b01846 CrossRefGoogle Scholar
  29. 29.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  30. 30.
    Baltzly R, Phillips AP (1946) The catalytic hydrogenolysis of halogen compounds. J Am Chem Soc 68:261–265.  https://doi.org/10.1021/ja01206a034 CrossRefGoogle Scholar
  31. 31.
    Coq B, Tijani A, Figuéras F (1992) Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn. J Mol Catal 71:317–333.  https://doi.org/10.1016/0304-5102(92)85022-8 CrossRefGoogle Scholar
  32. 32.
    Wang X, Liang M, Zhang J, Wang Y (2007) Selective hydrogenation of aromatic chloronitro compounds. Curr Org Chem 11:299–314.  https://doi.org/10.2174/138527207779940856 CrossRefGoogle Scholar
  33. 33.
    Fan GY, Zhang L, Fu HY et al (2010) Hydrous zirconia supported iridium nanoparticles: an excellent catalyst for the hydrogenation of haloaromatic nitro compounds. Catal Commun 11:451–455.  https://doi.org/10.1016/j.catcom.2009.11.021 CrossRefGoogle Scholar
  34. 34.
    Oubenali M, Vanucci G, Machado B et al (2011) Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. ChemSusChem 4:950–956.  https://doi.org/10.1002/cssc.201000335 CrossRefPubMedGoogle Scholar
  35. 35.
    Layek K, Kantam ML, Shirai M et al (2012) Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem 14:3164–3174.  https://doi.org/10.1039/c2gc35917k CrossRefGoogle Scholar
  36. 36.
    Wang Y, Rong Z, Wang Y et al (2015) Ruthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: an exploration of confinement effect. J Catal 329:95–106.  https://doi.org/10.1016/j.jcat.2015.04.034 CrossRefGoogle Scholar
  37. 37.
    Li F, Ma R, Cao B et al (2016) Effect of loading method on selective hydrogenation of chloronitrobenzenes over amorphous Ni-B/CNTs catalysts. Catal Commun 80:1–4.  https://doi.org/10.1016/j.catcom.2016.03.009 CrossRefGoogle Scholar
  38. 38.
    Dongil AB, Pastor-Pérez L, Fierro JLG et al (2016) Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene. Appl Catal A 513:89–97.  https://doi.org/10.1016/j.apcata.2015.11.048 CrossRefGoogle Scholar
  39. 39.
    Lu C, Wang M, Feng Z et al (2017) A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catal Sci Technol 7:1581–1589.  https://doi.org/10.1039/C7CY00157F CrossRefGoogle Scholar
  40. 40.
    Han X, Zhou R, Zheng XM, Jiang H (2003) Effect of rare earths on the hydrogenation properties of p- chloronitrobenzene over polymer-anchored platinum catalysts. J Mol Catal A 193:103–108.  https://doi.org/10.1016/S1381-1169(02)00178-4 CrossRefGoogle Scholar
  41. 41.
    Han X, Zhou R, Lai G, Zheng X (2004) Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal Today 93–95:433–437.  https://doi.org/10.1016/j.cattod.2004.06.053 CrossRefGoogle Scholar
  42. 42.
    Han XX, Chen Q, Zhou RX (2007) Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu. J Mol Catal A 277:210–214.  https://doi.org/10.1016/j.molcata.2007.07.052 CrossRefGoogle Scholar
  43. 43.
    Mistri R, Llorca J, Ray BC, Gayen A (2013) Pd0.01Ru0.01Ce0.98O2-δ: a highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions. J Mol Catal A 376:111–119.  https://doi.org/10.1016/j.molcata.2013.04.018 CrossRefGoogle Scholar
  44. 44.
    Iihama S, Furukawa S, Komatsu T (2016) Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal 6:742–746.  https://doi.org/10.1021/acscatal.5b02464 CrossRefGoogle Scholar
  45. 45.
    Coq B, Tijani A, Dutartre R, Figuéras F (1993) Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. J Mol Catal 79:253–264.  https://doi.org/10.1016/0304-5102(93)85106-4 CrossRefGoogle Scholar
  46. 46.
    Sierra-Salazar AF, Hulea V, Ayral A et al (2018) Engineering of silica-supported platinum catalysts with hierarchical porosity combining latex synthesis, sonochemistry and sol-gel process—II. Catalytic performance. Microporous Mesoporous Mater 256:227–234.  https://doi.org/10.1016/j.micromeso.2017.08.016 CrossRefGoogle Scholar
  47. 47.
    Nikitenko SI, Le Naour C, Moisy P (2007) Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem 14:330–336.  https://doi.org/10.1016/j.ultsonch.2006.06.006 CrossRefPubMedGoogle Scholar
  48. 48.
    Pflieger R, Chave T, Vite G et al (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175.  https://doi.org/10.1016/j.ultsonch.2015.02.005 CrossRefPubMedGoogle Scholar
  49. 49.
    Blaser HU, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1:210–221CrossRefGoogle Scholar
  50. 50.
    Badalyan A, Pendleton P (2003) Analysis of uncertainties in manometric gas-adsorption measurements. I: propagation of uncertainties in BET analyses. Langmuir 19:7919–7928.  https://doi.org/10.1021/la020985t CrossRefGoogle Scholar
  51. 51.
    Kim DW, Lee JM, Oh C et al (2006) A novel preparation route for platinum-polystyrene heterogeneous nanocomposite particles using alcohol-reduction method. J Colloid Interface Sci 297:365–369.  https://doi.org/10.1016/j.jcis.2005.09.067 CrossRefPubMedGoogle Scholar
  52. 52.
    Ziff RM, Torquato S (2017) Percolation of disordered jammed sphere packings. J Phys A 50:85001.  https://doi.org/10.1088/1751-8121/aa5664 CrossRefGoogle Scholar
  53. 53.
    Tanaka HKM, Yamauchi Y, Kurihara T et al (2008) Exploration of a standing mesochannel system with antimatter/matter atomic probes. Adv Mater 20:4728–4733CrossRefGoogle Scholar
  54. 54.
    Finegan DP, Scheel M, Robinson JB et al (2016) Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study. Phys Chem Chem Phys 18:30912–30919.  https://doi.org/10.1039/C6CP04251A CrossRefPubMedGoogle Scholar
  55. 55.
    Lowe T, Bradley RS, Yue S et al (2015) Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography. J Nucl Mater 461:29–36CrossRefGoogle Scholar
  56. 56.
    Schurch R, Rowland S, Bradley R, Withers P (2015) Comparison and combination of imaging techniques for three dimensional analysis of electrical trees. IEEE Trans Dielectr Electr Insul 22:709–719CrossRefGoogle Scholar
  57. 57.
    Sierra-Salazar AF, Li WSJ, Bathfield M et al (2018) Hierarchically porous Pd/SiO2 catalyst by combination of miniemulsion polymerisation and sol-gel method for the direct synthesis of H2O2. Catal Today 306:16–22.  https://doi.org/10.1016/j.cattod.2016.12.021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrés Felipe Sierra-Salazar
    • 1
    • 4
  • André Ayral
    • 2
    Email author
  • Tony Chave
    • 3
  • Vasile Hulea
    • 1
  • Sergey I. Nikitenko
    • 3
  • Siglinda Perathoner
    • 4
  • Patrick Lacroix-Desmazes
    • 1
    Email author
  1. 1.ICGM, Université de Montpellier, CNRS, ENSCM. Ingénierie et Architectures Macromoléculaires (IAM), Matériaux Avancés pour la Catalyse et la Santé (MACS)Montpellier Cedex 5France
  2. 2.IEM, Université de Montpellier, CNRS, ENSCM, CC047Montpellier Cedex 5France
  3. 3.ICSM, Université de Montpellier, CEA, CNRS, ENSCMBagnols sur Cèze CedexFrance
  4. 4.Università di Messina, ERIC aisbl and CASPE/INSTMMessinaItaly

Personalised recommendations