Advertisement

Higher Hydrocarbons Synthesis from CO2 Hydrogenation Over K- and La-Promoted Fe–Cu/TiO2 Catalysts

  • Nuttakorn Boreriboon
  • Xiao Jiang
  • Chunshan Song
  • Pattarapan Prasassarakich
Original Paper
  • 28 Downloads

Abstract

Developing selective and active catalyst is critical for CO2 hydrogenation to higher hydrocarbons especially C5+ products. The present work reports on the significant promoting effects of K and La addition to Fe–Cu/TiO2 catalyst on higher hydrocarbon production from CO2 hydrogenation. The incorporation of both K and La promoters can improve both CO2 hydrogenation activity and selectivity to higher hydrocarbons of Fe-based catalyst. Characterization by temperature-programmed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the presence of K promoter significantly decreased the adsorption of H2, which suppressed the CH4 formation. On the other hand, La addition can promote the moderately adsorbed CO2 species (mainly monodentate carbonate species), which leads to the enhanced C5–C7 selectivity. The simultaneous use of promoters La and K can tailor the H and C coverage on the catalyst surface, which plays an important role in altering product distribution in CO2 hydrogenation.

Graphical Abstract

Keywords

CO2 hydrogenation Fe–Cu bimetallic catalyst K/La promotion Adsorption properties 

Notes

Acknowledgements

This work was supported in part by the Pennsylvania State University through the EMS Energy Institute and the Penn State Institute of Energy and the Environment. One of the authors, Nuttakorn Boreriboon, acknowledges the financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program Scholarship. We are grateful for the helpful discussion and assistance provided by Wenjia Wang from Clean Fuels and Catalysis Program (CFCP) in the EMS Energy Institute at Penn State.

References

  1. 1.
    Hu B, Guild C, Suib SL (2013) J CO2 Util 1:18–27CrossRefGoogle Scholar
  2. 2.
    Burghaus U (2009) Catal Today 148(3–4):212–220CrossRefGoogle Scholar
  3. 3.
    Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) Catal Today 148(3–4):221–231CrossRefGoogle Scholar
  4. 4.
    Saeidi S, Amin NAS, Rahimpour MR (2014) J CO2 Util 5:66–81CrossRefGoogle Scholar
  5. 5.
    Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B 170–171(0):173–185CrossRefGoogle Scholar
  6. 6.
    Krishnamoorthy S, Li A, Iglesia E (2002) Catal Lett 80(1–2):77–86CrossRefGoogle Scholar
  7. 7.
    Riedel T, Schaub G, Jun KW, Lee KW (2001) Ind Eng Chem Res 40(5):1355–1363CrossRefGoogle Scholar
  8. 8.
    Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) Appl Catal A 373(1–2):112–121CrossRefGoogle Scholar
  9. 9.
    Lee S-C, Jang J-H, Lee B-Y, Kim J-S, Kang M, Lee S-B, Choi M-J, Choung S-J (2004) J Mol Catal A 210(1–2):131–141CrossRefGoogle Scholar
  10. 10.
    Li TZ, Yang Y, Zhang CH, Tao ZC, Wan HJ, An X, Xiang HW, Li YW (2007) J Nat Gas Chem 16(3):244–251CrossRefGoogle Scholar
  11. 11.
    Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Fuel Process Technol 118:117–124CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2(9):1030–1058CrossRefGoogle Scholar
  13. 13.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) J CO2 Util 3–4:102–106CrossRefGoogle Scholar
  14. 14.
    Centi G, Perathoner S (2009) Catal Today 148(3–4):191–205CrossRefGoogle Scholar
  15. 15.
    Ghenciu AF (2002) Curr Opin Solid State Mater Sci 6:389–399CrossRefGoogle Scholar
  16. 16.
    Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K (2003) Appl Catal A 238:11–18CrossRefGoogle Scholar
  17. 17.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40(7):3703–3727CrossRefGoogle Scholar
  18. 18.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) Top Catal 57(6–9):588–594Google Scholar
  19. 19.
    Rodemerck U, Holeňa M, Wagner E, Smejkal Q, Barkschat A, Baerns M (2013) ChemCatChem 5(7):1948–1955CrossRefGoogle Scholar
  20. 20.
    Hinchiranan S, Zhang Y, Nagamori S, Vitidsant T, Tsubaki N (2008) Fuel Process Technol 89(4):455–459CrossRefGoogle Scholar
  21. 21.
    Xiao J, Mao D, Guo X, Yu J (2015) Appl Surf Sci 338(0):146–153CrossRefGoogle Scholar
  22. 22.
    Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Catal Today 251:34–40CrossRefGoogle Scholar
  23. 23.
    Barrault J, Guilleminot A, Achard JC, Paul-Boncour V, Percheron-Guegan A (1986) Appl Catal 21(2):307–312CrossRefGoogle Scholar
  24. 24.
    Nam S-S, Kishan G, Lee M-W, Choi M-J, Lee K-W (2000) Appl Organomet Chem 14(12):794–798CrossRefGoogle Scholar
  25. 25.
    Cubeiro ML, Morales H, Goldwasser MR, Pérez-Zurita MJ, González-Jiménez F (2000) React Kinet Catal Lett 69(2):259–264CrossRefGoogle Scholar
  26. 26.
    Riedel T, Claeys M, Schulz H, Schaub G, Nam S-S, Jun K-W, Kishan M-JCG, Lee K-W (1999) Appl Catal A 186:201–213CrossRefGoogle Scholar
  27. 27.
    Martra G (2000) Appl Catal A 200(1–2):275–285CrossRefGoogle Scholar
  28. 28.
    Busca G, Lorenzelli V (1982) Mater Chem 7(1):89–126CrossRefGoogle Scholar
  29. 29.
    Montanari T, Castoldi L, Lietti L, Busca G (2011) Appl Catal A 400(1–2):61–69CrossRefGoogle Scholar
  30. 30.
    Kantschewa M, Albano EV, Etrtl G, Kno¨zinger H (1983) Appl Catal 8(1):71–84CrossRefGoogle Scholar
  31. 31.
    Hirano T (1986) Appl Catal 26:65–79CrossRefGoogle Scholar
  32. 32.
    Tsuji H, Okamura-Yoshida A, Shishido T, Hattori H (2003) Langmuir 19(21):8793–8800CrossRefGoogle Scholar
  33. 33.
    Zowtiak JM, Bartholomew CH (1983) J Catal 83(1):107–120CrossRefGoogle Scholar
  34. 34.
    Bozso F, Ertl G, Grunze M, Weiss M (1977) Appl Surf Sci 1(1):103–119CrossRefGoogle Scholar
  35. 35.
    Chen C-S, Cheng W-H, Lin S-S (2003) Appl Catal A 238(1):55–67CrossRefGoogle Scholar
  36. 36.
    Nie X, Wang H, Janik MJ, Guo X, Song C (2016) J Phys Chem C 120(17):9364–9373CrossRefGoogle Scholar
  37. 37.
    Santiago-Rodríguez Y, Barreto-Rodríguez E, Curet-Arana MC (2016) J Mol Catal A 423:319–332CrossRefGoogle Scholar
  38. 38.
    Nie X, Wang H, Janik MJ, Chen Y, Guo X, Song C (2017) J Phys Chem C 121(24):13164–13174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nuttakorn Boreriboon
    • 1
    • 2
  • Xiao Jiang
    • 1
  • Chunshan Song
    • 1
  • Pattarapan Prasassarakich
    • 2
  1. 1.EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Departments of Energy and Mineral Engineering and of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Chemical Technology, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations