Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1672–1683 | Cite as

Dynamics and Selectivity of N2O Formation/Reduction During Regeneration Phase of Pt-Based Catalysts

  • Lidia Castoldi
  • Roberto Matarrese
  • Chuncheng Liu
  • Sara Morandi
  • Luca Lietti
Original Paper
  • 67 Downloads

Abstract

The formation of N2O has been studied by means of isothermal lean-rich experiments at 150, 180 and 250 °C over Pt–Ba/Al2O3 and Pt/Al2O3 catalysts with H2 and/or C3H6 as reductants. This allows to provide further insights on the mechanistic aspects of N2O formation and on the influence of the storage component. Both gas phase analysis and surface species studies by operando FT-IR spectroscopy were performed. N2O evolution is observed at both lean-to-rich (primary N2O) and rich-to-lean (secondary N2O) transitions. The production of both primary and secondary N2O decreases by increasing the temperature. The presence of Ba markedly decreases secondary N2O formation. FT-IR analysis shows the presence of adsorbed ammonia at the end of the rich phase only for Pt/Al2O3 catalyst. These results suggest that: (i) primary N2O is formed when undissociated NO in the gas phase and partially reduced metal sites are present; (ii) secondary N2O originates from reaction between adsorbed NH3 and residual NOx at the beginning of the lean phase. Moreover, N2O reduction was studied performing temperature programming temperature experiments with H2, NH3 and C3H6 as reducing agents. The reduction is completely selective to nitrogen and occurs at temperature higher than 250 °C in the case of Pt–Ba/Al2O3 catalyst, while lower temperatures are detected for Pt/Al2O3 catalyst. The reactivity order of the reductants is the same for the two catalysts, being hydrogen the more efficient and propylene the less one. Having H2 a high reactivity in the reduction of N2O, it could react with N2O when the regeneration front is developing. Moreover, also ammonia present downstream to the H2 front could react with N2O, even if the reaction with stored NOx seems more efficient.

Keywords

N2O reduction N2O formation Lean NOx Trap NOx storage reduction Pt–Ba/Al2O3 Pt 

References

  1. 1.
    Bielaczyc P, Woodburn J, Szczotka A (2014) Appl Energy 117:134–141CrossRefGoogle Scholar
  2. 2.
    Chen Y, Borken-Kleefeld J (2014) Atmos Environ 88:157–164CrossRefGoogle Scholar
  3. 3.
    Lietti L, Daturi M, Blasin-Aubé V, Ghiotti G, Prinetto F, Forzatti P (2012) ChemCatChem 4(1):55–58CrossRefGoogle Scholar
  4. 4.
    Lashof DA, Ahuja DR (1990) Nature 344(6266):529CrossRefGoogle Scholar
  5. 5.
    Bártová Š, Kočí P, Mráček D, Marek M, Pihl JA, Choi J-S, Toops TJ, Partridge WP (2014) Catal Today 231:145–154CrossRefGoogle Scholar
  6. 6.
    Choi J-S, Partridge WP, Pihl JA, Kim M-Y, Kočí P, Daw CS (2012) Catal Today 184(1):20–26CrossRefGoogle Scholar
  7. 7.
    Clayton RD, Harold MP, Balakotaiah V (2009) AIChE J 55(3):687–700CrossRefGoogle Scholar
  8. 8.
    Dasari P, Muncrief R, Harold MP (2013) Top Catal 56(18):1922–1936CrossRefGoogle Scholar
  9. 9.
    Kočí P, Bártová Š, Mráček D, Marek M, Choi J-S, Kim M-Y, Pihl JA, Partridge WP (2013) Top Catal 56(1):118–124CrossRefGoogle Scholar
  10. 10.
    Jabłońska M, Palkovits R (2016) Catal Sci Technol 6:7671–7687CrossRefGoogle Scholar
  11. 11.
    Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145–150CrossRefGoogle Scholar
  12. 12.
    Xue L, He H, Liu C, Zhang C, Zhang B (2009) Environ Sci Technol 43:890–895CrossRefGoogle Scholar
  13. 13.
    Grzybek G, Stelmachowski P, Gudyka S, Indyka P, Sojka Z, Guillén-Hurtado N, Rico-Pérez V, Bueno-López A, Kotarba A (2016) Appl Catal B 180:622–629CrossRefGoogle Scholar
  14. 14.
    Zou W, Xie P, Hua W, Wang Y, Kong D, Yue Y, Ma Z, Yang W, Gao Z (2014) J Mol Catal A 394:83–88CrossRefGoogle Scholar
  15. 15.
    Zhang X, Shen Q, He C, Ma C, Cheng J, Liu Z, Hao Z (2012) Catal Sci Technol 2:1249–1258CrossRefGoogle Scholar
  16. 16.
    Piumetti M, Hussain M, Fino D, Russo N (2015) Appl Catal B 165:158–168CrossRefGoogle Scholar
  17. 17.
    Kim SS, Lee SJ, Hong SC (2011) Chem Eng J 169:173–179CrossRefGoogle Scholar
  18. 18.
    Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246(1):29–34CrossRefGoogle Scholar
  19. 19.
    Tamm S, Andonova S, Olsson L (2014) Catal Lett 144(7):1101–1112CrossRefGoogle Scholar
  20. 20.
    Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239(1):244–254CrossRefGoogle Scholar
  21. 21.
    Partridge WP, Choi J-S (2009) Appl Catal B 91(1):144–151CrossRefGoogle Scholar
  22. 22.
    Forzatti P, Lietti L, Castoldi L (2015) Catal Lett 145(2):483–504CrossRefGoogle Scholar
  23. 23.
    Castoldi L, Righini L, Matarrese R, Lietti L, Forzatti P (2015) J Catal 328:270–279CrossRefGoogle Scholar
  24. 24.
    Castoldi L, Matarrese R, Morandi S, Righini L, Lietti L (2018) Appl Catal B 224:249–263CrossRefGoogle Scholar
  25. 25.
    Lietti L, Forzatti P, Nova I, Tronconi E (2001) J Catal 204:175–191CrossRefGoogle Scholar
  26. 26.
    Morandi S, Prinetto F, Ghiotti G, Castoldi L, Lietti L, Forzatti P, Daturi M, Blasin-Aubé V (2014) Catal Today 231:116–124CrossRefGoogle Scholar
  27. 27.
    Centi G, Perathoner S, Biglino D, Giamello E (1995) J Catal 152:75–92CrossRefGoogle Scholar
  28. 28.
    Ramis G, Larrubia MA (2004) J Mol Catal A 215:161–167CrossRefGoogle Scholar
  29. 29.
    Sobczyk DP, Hesen JJG, van Grondelle J, Schuring D, de Jong AM, van Santen RA (2004) Catal Lett 94:37–43CrossRefGoogle Scholar
  30. 30.
    Righini L, Kubiak L, Morandi S, Castoldi L, Lietti L, Forzatti P (2014) ACS Catal 4:3261–3272CrossRefGoogle Scholar
  31. 31.
    Castoldi L, Matarrese R, Kubiak L, Daturi M, Artioli N, Pompa S, Lietti L (2018) Catal Today.  https://doi.org/10.1016/j.cattod.2018.01.026 (in press)CrossRefGoogle Scholar
  32. 32.
    Lietti L, Artioli N, Righini L, Castoldi L, Forzatti P (2012) Ind Eng Chem Res 51:7597–7605CrossRefGoogle Scholar
  33. 33.
    Bhatia D, Clayton RD, Harold MP, Balakotaiah V (2009) Catal Today 147S:S250CrossRefGoogle Scholar
  34. 34.
    Lietti L, Nova I, Forzatti P (2008) J Catal 257:270CrossRefGoogle Scholar
  35. 35.
    Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl Catal B 111:445–455CrossRefGoogle Scholar
  36. 36.
    Cant NW, Chambers DC, Liu IO (2011) J Catal 278:162–166CrossRefGoogle Scholar
  37. 37.
    McCabe RW, Wong C (1990) J Catal 121:422–431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Energia, Laboratory of Catalysis and Catalytic ProcessesPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Chimica and NIS, Inter-Departmental CenterUniversità di TorinoTurinItaly

Personalised recommendations