Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1684–1693 | Cite as

Insights into the Reaction Mechanism of Catalytic Wet Air Oxidation of Ammonia Over Bimetallic Ru–Cu Catalyst

  • Jile Fu
  • Dewei Xiao
  • Qingqing Yue
  • Lili Geng
  • Paul Oluwaseyi Fasan
  • Nuowei Zhang
  • Jinbao Zheng
  • Bing H. Chen
Original Paper
  • 86 Downloads

Abstract

The mechanism for catalytic wet air oxidation (CWAO) of ammonia to N2 over Ru–Cu/C catalyst is extensively studied by altering the initial pH, reaction temperature and atmosphere. It is found that N2 formation can be from the catalytically selective oxidation of ammonia or the disproportionation reaction between NH4+ and NO2. The initial oxidation of ammonia determines the reaction mechanism, the evolution of pH and the distribution of various nitrogen species. Over-oxidation to nitrous acid lowers the pH of the solution due to dissociation of HNO2 to H+ and NO2. With the decrease of pH, the concentration of NH4+ is increased and rapidly reacts with NO2 to form N2. The relatively lower pH also makes some nitrites be oxidized to NO3. Enhancing the reaction of selective oxidation of ammonia to N2 increases the selectivity to N2 while limits the pH decrease and NO3 formation, since NO2 is more dominant to HNO2 at high pH and hardly oxidized to NO3. The reaction temperature is one key factor to determine the reaction mechanism of CWAO of ammonia.

Graphical Abstarct

Keywords

Catalytic wet air oxidation Bimetallic Ru–Cu/C catalyst Ammonia oxidation to nitrogen Reaction mechanism 

Notes

Acknowledgements

The authors would like to thank the financial supports from the National Key Technology Support Program of China (2014BAC10B01). Prof Dr Gai would like to thank the support from key scientific and technological project of China’s Shanxi Province (MH2014-10). The support by the Natural Science Foundation of Fujian Province of China (2015J05031) and the Natural Science Foundation of China (21673187) are also acknowledged.

References

  1. 1.
    Verstraete W, Philips S (1998) Environ Pollut 102:717–726CrossRefGoogle Scholar
  2. 2.
    Dongen van U, Jetten M, Van Loosdrecht M (2001) Water Sci Technol 44:153–160CrossRefGoogle Scholar
  3. 3.
    Huang TL, MacInnes JM, Cliffe KR (2001) Water Res 35:2113–2120CrossRefGoogle Scholar
  4. 4.
    Chen JP, Chua ML, Zhang B (2002) Waste Manag 22:711–719CrossRefGoogle Scholar
  5. 5.
    Rožić M, Cerjan-Stefanović Š, Kurajica S, Vančina V, Hodžić E (2000) Water Res 34:3675–3681CrossRefGoogle Scholar
  6. 6.
    Radnik J, Benhmid A, Kalevaru VN, Pohl MM, Martin A, Lücke B, Dingerdissen U (2005) Angew Chem Int Ed 44:6771–6774CrossRefGoogle Scholar
  7. 7.
    Taguchi J, Okuhara T (2000) Appl Catal A 194–195:89–97CrossRefGoogle Scholar
  8. 8.
    Bernardi M, Le DM, Dodouche I, Descorme C, Deleris S, Blanchet E, Besson M (2012) Appl Catal B 128:64–71CrossRefGoogle Scholar
  9. 9.
    Cao SL, Chen GH, Hu XJ, Yue PL (2003) Catal Today 88:37–47CrossRefGoogle Scholar
  10. 10.
    Lousteau C, Besson M, Descorme C (2015) Catal Today 241:80–85CrossRefGoogle Scholar
  11. 11.
    Li Y, Zhang R, Li HS, Dong M (2005) Chem J Chin 26:430–435Google Scholar
  12. 12.
    Takayama H, Qin JY, Inazu K, Aika K (1999) Chem. Lett 28:377–378CrossRefGoogle Scholar
  13. 13.
    Hung CM, Lou JC, Lin CH (2003) Chemosphere 52:989–995CrossRefGoogle Scholar
  14. 14.
    Hung CM (2009) Environ Eng Sci 26:351–358CrossRefGoogle Scholar
  15. 15.
    Hung CM (2009) J Hazard Mater 166:1314–1320CrossRefGoogle Scholar
  16. 16.
    Hung CM (2009) J Hazard Mater 163:180–186CrossRefGoogle Scholar
  17. 17.
    Kaewpuang NS, Inazu K, Kobayashi T, Aika KI (2004) Water Res 38:778–782CrossRefGoogle Scholar
  18. 18.
    Qin J, Aika K (1998) Appl Catal B 16:261–268CrossRefGoogle Scholar
  19. 19.
    Webley PA, Tester JW, Holgate HR (1991) Ind Eng Chem Res 30:1745–1754CrossRefGoogle Scholar
  20. 20.
    Barbier JJ, Oliviero L, Renard B, Duprez D (2002) Catal Today 75:29–34CrossRefGoogle Scholar
  21. 21.
    Lee DK (2003) Environ Sci Technol 37:5745–5749CrossRefGoogle Scholar
  22. 22.
    Lee DK, Cho JS, Yoon WL (2005) Chemosphere 61:573–578CrossRefGoogle Scholar
  23. 23.
    Fu J, Yang K, Ma C, Zhang N, Gai H, Zheng J, Chen BH (2016) Appl Catal B 184:216–222CrossRefGoogle Scholar
  24. 24.
    Wang Z, Hameed S, Wen Y, Zhang N, Gai H, Zheng J, Chen BH (2017) Sci Rep 7:3911CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations