Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of the Presence of Ceria in the NSR Catalyst on the Hydrothermal Resistance and Global DeNOx Performance of Coupled LNT–SCR Systems

  • 221 Accesses

  • 1 Citations

Abstract

The global performance of coupled LNT–SCR systems, addressed to high NOx-to-N2 conversion, minimal ammonia slip and null N2O production, as well as the hydrothermal resistance of single NSR and SCR monolith catalysts and their coupling is discussed. Pt–Ba/Al2O3 and Pt–Ce–Ba/Al2O3 were washcoated on cordierite monoliths as NSR catalysts, and Cu/CHA was washcoated on similar monoliths as SCR catalysts. Both monoliths were coupled in two subsequent reactors to conform the LNT–SCR system. Previously to washcoating, the fresh powder catalysts and after severe hydrothermal aging were fully characterized by N2 adsorption–desorption isotherms at 77 K, X-ray diffraction, NH3 temperature-programmed desorption, and H2 chemisorption to relate textural and chemical characteristics with the DeNOx performance. The Cu/CHA catalyst shows an excellent hydrothermal resistance for the NH3–SCR reaction. Incorporation of ceria to the model Pt–BaO/Al2O3is beneficial for the NO-to-NOx oxidation and NO2 storage, improving NO conversion at low temperature and reducing the NH3 slip. However, addition of ceria is detrimental for the hydrothermal resistance of the NSR catalyst. However, this detrimental effect is minimized when the NSR catalyst is coupled with the Cu/CHA monolith downstream of the NSR catalyst, achieving the coupled LNT–SCR device high NO conversion and minimal NH3 slip with superior N2 selectivity for an extended temperature windows, including as low as 220 °C, and maintaining performance even after severe hydrothermal aging.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207

  2. 2.

    Miyoshi N, Matsumoto S, Katoh T, Tanaka T, Harada J, Takahashi N, Yokota K, Sugiara M, Kasahara K (1995) SAE Technical Paper 950809

  3. 3.

    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev Sci Eng 46:163–245

  4. 4.

    Pereda-Ayo B, López-Fonseca R, González-Velasco JR (2009) Appl Catal A 363:73–80

  5. 5.

    Lietti L, Nova I, Tronconi E (1998) Catal Today 45:85–92

  6. 6.

    Corbos EC, Haneda M, Courtois X, Marecot P, Duprez D, Hamada H (2008) Catal Commun 10:137–141

  7. 7.

    De La Torre U, Pereda-Ayo B, Romero-Sáez M, Aranzabal A, González-Marcos MP, González-Marcos JA, González-Velasco JR (2013) Top Catal 56:215–221

  8. 8.

    Gandhi HS, Cavataio JV, Hammerle RH, Cheng Y, Ford (2009) Global Technologies LLC, US Patent 7,485,273

  9. 9.

    Weibel M, Waldbüsser N, Wunsch P, Chatterjee D, Bandl-Konrad B, Kruntzsch B (2009) Top Catal 52:1702–1708

  10. 10.

    Xu L, McCabe R, Dearth M, Ruona W (2010) SAE Tech. Pap. 2010-01-0305

  11. 11.

    Pereda-Ayo B, Duraiswami D, González-Velasco JR (2011) Catal Today 172:66–72

  12. 12.

    Castoldi L, Bonzi R, Lietti L, Forzatti P, Morandi S, Ghiotti G, Dzwigaj S (2011) J Catal 282:128–144

  13. 13.

    Pereda-Ayo B, De La Torre U, González-Marcos MP, González-Velasco JR (2015) Catal Today 241:133–142

  14. 14.

    Urea -SCR (2014) In: Nova I, Tronconi E (eds) Technology for DeNOx after treatment of diesel exhausts. Springer, New York

  15. 15.

    Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Appl Catal B 127:273–280

  16. 16.

    Gao F, Kwak J, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459

  17. 17.

    Blakerman PG, Burkholder EM, Chen H-Y, Collier JE, Fedeyko JM, Jobson H, Rajaram RR (2014) Catal Today 231:56–63

  18. 18.

    Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal 102:441–448

  19. 19.

    Martínez-Franco R, Moliner M, Concepción P, Thogersen JR, Corma A (2014) J Catal 314:73–82

  20. 20.

    Martín N, Moliner M, Corma A (2015) Chem Commun 51:9965–9968

  21. 21.

    Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudran K, Epling WS (2015) Appl Catal B 165:438–445

  22. 22.

    Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2013) Chem Eng J 225:323–330

  23. 23.

    De-La-Torre U, Pereda-Ayo B, Moliner M, González-Velasco JR, Corma A (2016) Appl Catal B 187:419–427

  24. 24.

    Seo CK, Kim H, Choi B, Lim MT, Lee CH, Lee CB (2011) Catal Today 164:507–514

  25. 25.

    Xu L, McCabe RW (2012) Catal Today 184:83–94

  26. 26.

    Wang J, Ji Y, Jacobs G, Jones S, Kim DJ, Crocker M (2014) Appl Catal B 148–149:51–61

  27. 27.

    S.I. Zones, US Patent 4,544,538 (1985)

  28. 28.

    Pereda-Ayo B, De La Torre U, Romero-Sáez M, Aranzabal A, González-Marcos JA, González-Velasco JR (2013) Catal Today 216:82–89

  29. 29.

    Kwak H, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209

  30. 30.

    Wang J, Yu T, Wang A, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B 127:137–147

  31. 31.

    Pereda-Ayo B, Divakar D, López-Fonseca R, González-Velasco JR (2009) Catal Today 147S:S244–S249

  32. 32.

    Wei HJ, Xie SJ, Gao NN, Liu KF, Liu XH, Xin WJ, Li XJ, Liu SL, Xu LY (2015) Appl Catal A 495:152–161

  33. 33.

    Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2015) Appl Catal B 162:501–514

  34. 34.

    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

  35. 35.

    Le Phuc N, Corbos EC, Courtois X, Can F, Marecot P, Duprez D (2009) Appl Catal B 93:12–21

  36. 36.

    Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D (2010) Appl Catal B 102:362–371

  37. 37.

    Casapu M, Grunwaldt JD, Maciejewski M, Krumeich F, Baiker A, Wittrock M, Eckhoff S (2008) Appl Catal B 78:288–300

  38. 38.

    Shinjoh H, Hatanaka M, Nagai Y, Tanabe T, Takahashi N, Yoshida T, Miyake Y (2009) Top Catal 52:1967–1971

  39. 39.

    Casapu M, Grunwaldt J-D, Maciejewski M, Baiker A, Eckhoff S, Göbel U, M Wittrock (2007) J Catal 251:28–38

  40. 40.

    Peng R, Li S, Sun X, Ren Q, Chen L, Wu MF,J, Ye D (2018) Appl Catal B 220:462–470

  41. 41.

    Pan C-J, Tsai M-C, Su W-N, Rick J, Akalework NG, Agegnehu A, Cheng S-Y, Hwang B-J (2017) J Taiwan Inst Chem Eng 74:154–186

  42. 42.

    Zheng T, He J, Zhao Y, Xia W, He J (2014) J Rare Earths 32:97–107

  43. 43.

    Hunger B, Hoffmann J, Heitzsch O, Hunger MJ (1990) J Therm Anal 36:1379–1391

  44. 44.

    Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng YZ (2009) Appl Catal A 364:48–56

  45. 45.

    Martins GAV, Berlier G, Coluccia S, Pastore HO, Superti GB, Gatti G, Marchese L (2007) J Phys Chem C 111:330–339

  46. 46.

    Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H (2010) Appl Catal B 101:61

  47. 47.

    Torre-Abreu C, Ribeiro MF, Henriques C, Delahay G (1997) Appl Catal B 12:249

  48. 48.

    Gjervan T, Prestvik R, Tøtdal B, Lyman CE, Holmen A (2001) Catal Today 65:163–169

  49. 49.

    Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) J Hazard Mater 186:1445–1454

  50. 50.

    Dömök M, Oszkó A, Baán K, Sarusi I, Erdõhelyi A (2010) Appl Catal A 383:33–43

  51. 51.

    Duarte RB, Damyanova S, de Oliveira DC, Marques CMP, Bueno JMC (2011) Appl Catal A 399:134–145

  52. 52.

    Shyu JZ, Otto K (1989) J Catal 115:16–23

  53. 53.

    González-Marcos MP, Pereda B, De La Torre U, González-Velasco JR (2013) Top Catal 56:352–363

  54. 54.

    Damyanova S, Bueno JMC (2003) Appl Catal A 253:135–150

  55. 55.

    Elbouazzaoui S, Courtois X, Marecot P, Duprez D (2004) Top Catal 30–31:493–493

  56. 56.

    De La Torre U, Pereda-Ayo B, González-Velasco JR (2012) Chem Eng J 207–208:10–17

  57. 57.

    Mihai O, Widyastuti C, Andonova S, Kamasamudran K, Li J, Joshi S, Currier NW, Yazerets A, Olsson L (2014) J Catal 311:170–177

  58. 58.

    Clayton RD, Harold MP, Balakotaiah V (2009) AIChE J 55:687–700

  59. 59.

    De-La-Torre U, Pereda-Ayo B, Moliner M, González-Marcos JA, Corma A, González-Velasco JR (2017) Top Catal 60:30–39

  60. 60.

    Lietti L, Nova I, Forzatti P (2008) J Catal 257:270–282

  61. 61.

    Pereda-Ayo B, Duraiswami D, González-Marcos JA, González-Velasco JR (2011) Chem Eng J 169:58–67

Download references

Acknowledgements

The support from the Economy and Competitiveness Spanish Ministry (CTQ2009-12517 and CTQ2015-67597 MINECO-FEDER) and the Basque Government (IT657-13) and the University of the Basque Country are acknowledged.

Author information

Correspondence to Juan R. González-Velasco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De-La-Torre, U., Pereda-Ayo, B., Onrubia, J.A. et al. Effect of the Presence of Ceria in the NSR Catalyst on the Hydrothermal Resistance and Global DeNOx Performance of Coupled LNT–SCR Systems. Top Catal 61, 1993–2006 (2018). https://doi.org/10.1007/s11244-018-1016-0

Download citation

Keywords

  • NOx storage and reduction
  • Cu/chabazite
  • NH3–SCR
  • Hydrothermal aging
  • Coupling NSR–SCR
  • LNT–SCR