Topics in Catalysis

, Volume 61, Issue 18–19, pp 1949–1956 | Cite as

Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions

  • Mikhail Khrizanforov
  • Sofia Strekalova
  • Vera Khrizanforova
  • Alexey Dobrynin
  • Kirill Kholin
  • Tatyana Gryaznova
  • Valeriya Grinenko
  • Aidar Gubaidullin
  • M. K. Kadirov
  • Yulia Budnikova
Original Paper


Joined electrolysis of arenes (benzene or coumarin derivatives) and diethyl-H-phosphonate (EtO)2P(O)H in the presence of [CoCl2(bpy)] catalyst (5%) in an ethanol-aqueous solution in reductive conditions allows obtaining the desired products in a single step by aromatic C–H bonds phosphonation with yields up to 70%. The only by-product is hydrogen; the reaction proceeds at room temperature and does not require specially added reducing agents and oxidants or other initiators. Radical mechanism has been confirmed for the catalytic reaction proceeding via bicobalt phosphonates with Co–P bond, the structure of which also has been identified.


Green chemistry Cobalt catalyst C–P bond formation Electrosynthesis 



This work was supported by the Russian Science Foundation No. 14-23-00016.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

11244_2018_1014_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3639 KB)
11244_2018_1014_MOESM2_ESM.cif (1.1 mb)
Supplementary material 2 (CIF 1173 KB)
11244_2018_1014_MOESM3_ESM.pdf (177 kb)
Supplementary material 3 (PDF 176 KB)


  1. 1.
    Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman LK, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9:411–420Google Scholar
  2. 2.
    Fabry DC, Rueping M (2016) Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. Acc Chem Res 49:1969–1979PubMedPubMedCentralGoogle Scholar
  3. 3.
    Chupakhin ON, Charushin VN (2016) Recent advances in the field of nucleophilic aromatic substitution of hydrogen. Tetrahedron Lett 57:2665–2672Google Scholar
  4. 4.
    Rodesly F, Oble J, Poli G (2017) Metal-catalyzed CH activation/functionalization: the fundamentals. J Mol Catal A 426:275–296Google Scholar
  5. 5.
    Budnikova YH, Sinyashin OG (2015) Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russ Chem Rev 84:917–951Google Scholar
  6. 6.
    Mikhaylov DY, Budnikova YH (2013) Fluoroalkylation of organic compounds. Russ Chem Rev 82:835–864Google Scholar
  7. 7.
    Odinets IL, Vinogradova NM, Lyssenko KA, Petrovskii PV, Mastryukova TA, Röschenthaler GV (2006) Diastereoselective cycloalkylation of phosphoryl and thiophosphoryl acetonitriles by α, ψ-dihalogenalkanes under phase transfer catalysis conditions. Heteroat Chem 17:13–21Google Scholar
  8. 8.
    Trofimov BA, Arbuzova SN, Gusarova NK (1999) Phosphine in the synthesis of organophosphorus compounds. Russ Chem Rev 68:215–228Google Scholar
  9. 9.
    Lebel H, Morin S, Paquet V (2003) Alkylation of phosphine boranes by phase-transfer catalysis. Org Lett 5:2347–2349PubMedGoogle Scholar
  10. 10.
    Odinets IL, Matveeva EV (2012) The application of green chemistry methods in organophosphorus synthesis. Russ Chem Rev 81:221–238Google Scholar
  11. 11.
    Budnikova YH, Gryaznova TV, Grinenko VV, Dudkina YB, Khrizanforov MN (2017) Eco-efficient electrocatalytic C–P bond formation. Pure Appl Chem 89:311–330Google Scholar
  12. 12.
    Budnikova YH, Krasnov SA, Gryaznova TV, Tomilov AP, Turigin VV, Magdeev IM, Sinyashin OG (2008) “Green” ways of phosphorus compounds preparation. Phosphorus Sulfur Silicon Relat Elem 183:513–518Google Scholar
  13. 13.
    Budnikova YH, Yakhvarov DG, Sinyashin OG (2005) Electrocatalytic eco-efficient functionalization of white phosphorus. J Organomet Chem 690:2416–2425Google Scholar
  14. 14.
    Li C-J (2016) Exploration of new chemical reactivities for sustainable molecular transformations. Chem 1(3):423–437Google Scholar
  15. 15.
    Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) Pd(II)-catalyzed phosphorylation of aryl C–H bonds. J Am Chem Soc 135(25):9322–9325PubMedGoogle Scholar
  16. 16.
    Chen P, Sun Y, Wu Y, Liu L, Zhu J, Zhao Y (2017) A theoretical study on the mechanism of ruthenium(II)-catalyzed phosphoryl-directed ortho-selective C–H bond activations: the phosphoryl hydroxy group triggered Ru(II)/Ru(0) catalytic cycle. Org Chem Front 4:1482–1492Google Scholar
  17. 17.
    Liu L, Yuan H, Fu T, Wang T, Gao X, Zeng Z, Zhu J, Zhao Y (2014) Double role of the hydroxy group of phosphoryl in palladium(II)-catalyzed ortho-olefination: a combined experimental and theoretical investigation. J Org Chem 79(1):80–87PubMedGoogle Scholar
  18. 18.
    Kosolapoff GM, Maier L (1972) Organic phosphorus compounds. Wiley, New YorkGoogle Scholar
  19. 19.
    Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology. CRC Press, LondonGoogle Scholar
  20. 20.
    Swaminathan S, Narayanan KV (1971) Rupe and meyer-schuster rearrangements. Chem Rev 71:429–438Google Scholar
  21. 21.
    Bhattacharya AK, Thyagarajan G (1981) Michaelis-arbuzov rearrangement. Chem Rev 81:415–430Google Scholar
  22. 22.
    Kostova I (2005) Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem 5:29–46Google Scholar
  23. 23.
    Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:1–14Google Scholar
  24. 24.
    Budzisz E, Brzezinska E, Krajewska U, Rozalski M (2003) Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues. Eur J Med Chem 38:597–603PubMedGoogle Scholar
  25. 25.
    Engel R, Cohen JI (2003) Synthesis of carbon–phosphorus bonds. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Tavs P (1970) Reaktion von Arylhalogeniden mit Trialkylphosphiten und Benzolphosphonigsäure-dialkylestern zu aromatischen Phosphonsäureestern und Phosphinsäureestern unter Nickelsalzkatalyse. Eur J Inorg Chem 103:2428–2436Google Scholar
  27. 27.
    Connor JA, Jones AC, Price R (1980) Copper (II) ethanoate-assisted phosphonation of aryl halides. J Chem Soc Chem Commun 4:137–138Google Scholar
  28. 28.
    Hall N, Price R (1979) The copper-promoted reaction of o-halogenodiarylazo-compounds with nucleophiles. Part 1. The copper-promoted reaction of o-bromodiarylazo-compounds with trialkyl phosphites. A novel method for the preparation of dialkyl arylphosphonates. J Chem Soc Perkin Trans 1:2634–2641Google Scholar
  29. 29.
    Hirao T, Masunaga T, Oshiro Y, Agawa T (1981) A novel synthesis of dialkyl arenephosphonates. Synthesis 1981:56–57Google Scholar
  30. 30.
    Hirao T, Masunaga T, Yamada N, Oshiro Y, Agawa T (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55:909–913Google Scholar
  31. 31.
    Battagia S, Vyle S (2003) Novel methodology for the preparation and purification of oligonucleotides incorporating phosphorothiolate termini. Tetrahedron Lett 44:861–863Google Scholar
  32. 32.
    Obrycki R, Griffin CE (1968) Phosphonic acids and esters. XIX. Synthesis of substituted phenyl-and arylphosphonates by the photoinitiated arylation of trialkyl phosphites. J Org Chem 33:632–636Google Scholar
  33. 33.
    Bunnett JF, Creary X (1974) Photostimulated condensation of aryl iodides with potassium dialkyl phosphites to form dialkyl arylphosphonates. J Org Chem 39:3612–3614Google Scholar
  34. 34.
    Jason EF, Fields EK (1962) Free-radical phosphonation of aromatic compounds. J Org Chem 27:1402–1405Google Scholar
  35. 35.
    Kottman H, Skarzewski J, Effenberger F (1987) Oxidative phosphonylierung von aromaten mit cerammoniumnitrat. Synthesis 1987:797–801Google Scholar
  36. 36.
    Effenberger F, Kottmann H (1985) Oxidative phosphonylation of aromatic compounds. Tetrahedron 41:4171–4182Google Scholar
  37. 37.
    Kagayama T, Nakano A, Sakaguchi S, Ishii Y (2006) Phosphonation of arenes with dialkyl phosphites catalyzed by Mn (II)/Co (II)/O2 redox couple. Org Lett 8:407–409PubMedGoogle Scholar
  38. 38.
    Mao X, Ma X, Zhang S, Hu H, Zhu C, Cheng Y (2013) Silver-catalyzed highly regioselective phosphonation of arenes bearing electron-withdrawing groups. Eur J Org Chem 20:4245–4248Google Scholar
  39. 39.
    Ohmori H, Nakai S, Masui M (1979) Anodic oxidation of organophosphorus compounds. Part 2. Formation of dialkyl arylphosphonates via arylation of trialkyl phosphites. J Chem Soc Perkin Trans 1:2023–2026Google Scholar
  40. 40.
    Nikitin EV, Romakhin AS, Parakin OV, Romanov GV, Kargin YM, Pudovik AN (1983) Electrochemical synthesis of aryl phosphonates. Russ Chem Bull 32:566–569Google Scholar
  41. 41.
    Cruz H, Gallardo I, Guirado G (2011) Electrochemical synthesis of organophosphorus compounds through nucleophilic aromatic substitution: mechanistic investigations and synthetic scope. Eur J Org Chem 36:7378–7389Google Scholar
  42. 42.
    Khrizanforov MN, Strekalova SO, Kholin KV, Khrizanforova VV, Kadirov MK, Gryaznova TV, Budnikova YH (2017) Novel approach to metal-induced oxidative phosphorylation of aromatic compounds. Catal Today 279:133–141Google Scholar
  43. 43.
    Robison CN, Addison JF (1966) Condensation of triethyl phosphonoacetate with aromatic aldehydes. J Org Chem 31:4325–4326Google Scholar
  44. 44.
    Singh RK, Rogers MD (1985) An efficient synthesis of diethyl coumarin-3-phosphonates. J Heterocycl Chem 22:1713–1714Google Scholar
  45. 45.
    Bouyssou P, Chenault J (1991) Phosphonates and phosphine oxides as reagents in a one-pot synthesis of coumarins. Tetrahedron Lett 32:5341–5344Google Scholar
  46. 46.
    Rodios NA, Bojilova A, Terzis A, Raptopoulou CP (1994) Reaction of 3-nitro-and 3-diethylphosphonocoumarin with phenacyl bromide. X-ray molecular structure of 3-nitro-3, 4-phenacylidenecoumarin. J Heterocycl Chem 31:1129–1133Google Scholar
  47. 47.
    Bojilova A, Nikolova R, Ivanov C, Rodios NA, Terzis A, Raptopoulou CP (1996) A comparative study of the interaction of salicylaldehydes with phosphonoacetates under Knoevenagel reaction conditions. Synthesis of 1, 2-benzoxaphosphorines and their dimers. Tetrahedron 52:12597–12612Google Scholar
  48. 48.
    Kostka K, Pastuszko S, Kotynski A, Budzisz E (1998) 4-Derivatives coumarin-3-phosphonic acids and esters. Phosphorus Sulfur Silicon Relat Elem 134:199–209Google Scholar
  49. 49.
    Takeuchi Y, Ueda N, Uesugi K, Abe H, Nishioka H, Harayama T (2003) Convenient synthesis of a simple coumarin from salicylaldehyde and Wittig reagent. IV: improved synthetic method of substituted coumarins. Heterocycles 59:217–224Google Scholar
  50. 50.
    Zhou P, Jiang YJ, Zou JP, Zhang W (2012) Manganese (III) acetate mediated free-radical phosphonylation of flavones and coumarins. Synthesis 44:1043–1050Google Scholar
  51. 51.
    Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C–H functionalization. Org Lett 15:6266–6269PubMedGoogle Scholar
  52. 52.
    Yuan JW, Li YZ, Yang LR, Mai WP, Mao P, Xiao YM, Qu LB (2015) Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron 71:8178–8186Google Scholar
  53. 53.
    Gao Y, Tang G, Zhao Y (2017) Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations, phosphorus, sulfur, and silicon and the related elements. Phosphorus Sulfur Silicon Relat Elem 192(6):589–596Google Scholar
  54. 54.
    Dudkina YB, Gryaznova TV, Sinyashin OG, Budnikova YH (2015) Ligand-directed electrochemical functionalization of C (sp 2)—H bonds in the presence of the palladium and nickel compounds. Russ Chem Bull 64:1713–1725Google Scholar
  55. 55.
    Gryaznova T, Dudkina Y, Khrizanforov M, Sinyashin O, Kataeva O, Budnikova Y (2015) Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation. J Solid State Electrochem 19:2665–2672Google Scholar
  56. 56.
    Gryaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova Y (2015) Pyridine-directed palladium-catalyzed electrochemical phosphonation of C(sp2)–H bond. J Organomet Chem 785:68–71Google Scholar
  57. 57.
    Dudkina YB, Gryaznova TV, Kataeva ON, Budnikova YH, Sinyashin OG (2014) Electrochemical CH phosphorylation of 2-phenylpyridine in the presence of palladium salts. Russ Chem Bull 63:2641–2646Google Scholar
  58. 58.
    Khrizanforov MN, Strekalova SO, Gryaznova TV, Khrizanforova VV, Budnikova YH (2015) New method of metal-induced oxidative phosphorylation of benzene. Russ Chem Bull 64:1926–1932Google Scholar
  59. 59.
    Jutand A (2008) Contribution of electrochemistry to organometallic catalysis. Chem Rev 108:2300–2347PubMedGoogle Scholar
  60. 60.
    Budnikova YH (2002) Metal complex catalysis in organic electrosynthesis. Russ Chem Rev 71:111–139Google Scholar
  61. 61.
    Budnikova YH, Yakhvarov DG, Kargin YM (1997) Arylation and alkylation of white phosphorus in the presence of electrochemically generated nickel (0) complexes. Mendeleev Commun 7:67–68Google Scholar
  62. 62.
    Budnikova YH, Kargin YM, Perichon J, Nedelec JY (1999) Nickel-catalysed electrochemical coupling between mono-or di-chlorophenylphosphines and aryl or heteroaryl halides. J Organomet Chem 575:63–66Google Scholar
  63. 63.
    Klein A, Budnikova YH, Sinyashin OG (2007) Electron transfer in organonickel complexes of α-diimines: versatile redox catalysts for C–C or C–P coupling reactions–a review. J Organomet Chem 692:3156–3166Google Scholar
  64. 64.
    Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119Google Scholar
  65. 65.
    Yoshida J, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299PubMedGoogle Scholar
  66. 66.
    Fuchigami T, Atobe M, Inagi S (2014) Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, ChichesterGoogle Scholar
  67. 67.
    Milyukov VA, Budnikova YH, Sinyashin OG (2005) Organic chemistry of elemental phosphorus. Russ Chem Rev 74:781–805Google Scholar
  68. 68.
    Dudkina YB, Khrizanforov MN, Gryaznova TV, Budnikova YH (2014) Prospects of synthetic electrochemistry in the development of new methods of electrocatalytic fluoroalkylation. J Organomet Chem 751:301–305Google Scholar
  69. 69.
    Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH (2013) Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states. Organometallics 32:4785–4792Google Scholar
  70. 70.
    Dudkina YB, Mikhaylov DY, Gryaznova TV, Sinyashin OG, Vicic DA, Budnikova YH (2012) MII/MIII-catalyzed ortho-fluoroalkylation of 2-phenylpyridine. Eur J Org Chem 2012:2114–2117Google Scholar
  71. 71.
    Khrizanforov M, Gryaznova T, Sinyashin O, Budnikova Y (2012) Aromatic perfluoroalkylation with metal complexes in electrocatalytic conditions. J Organomet Chem 718:101–104Google Scholar
  72. 72.
    Dudkina YB, Gryaznova TV, Osin YN, Salnikov VV, Davydov NA, Fedorenko SV, Mustafina AR, Vicic DA, Sinyashin OG, Budnikova YH (2015) Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation. Dalton Trans 44:8833–8838PubMedGoogle Scholar
  73. 73.
    Khrizanforov M, Strekalova S, Khrizanforova V, Grinenko V, Kholin K, Kadirov M, Burganov T, Gubaidullin A, Gryaznova T, Sinyashin O, Xu L, Vicic DA, Budnikova Y (2015) Iron-catalyzed electrochemical C–H perfluoroalkylation of arenes. Dalton Trans 44:19674–19681PubMedGoogle Scholar
  74. 74.
    Mikhaylov D, Gryaznova T, Dudkina Y, Khrizanphorov M, Latypov S, Kataeva O, Vicic DA, Sinyashin OG, Budnikova Y (2012) Electrochemical nickel-induced fluoroalkylation: synthetic, structural and mechanistic study. Dalton Trans 41:165–172PubMedGoogle Scholar
  75. 75.
    Khrizanforov MN, Fedorenko SV, Strekalova SO, Kholin KV, Mustafina AR, Zhilkin MY, Khrizanforova VV, Osin YN, Salnikov VV, Gryaznova TV, Budnikova YH (2016) Ni (iii) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C–H fluoroalkylation. Dalton Trans 45:11976–11982PubMedGoogle Scholar
  76. 76.
    Dudkina YB, Kholin KV, Gryaznova TV, Islamov DR, Kataeva ON, Rizvanov IK, Levitskaya AI, Fominykh OD, Balakina MY, Sinyashin OG, Budnikova YH (2017) Redox trends in cyclometalated palladium (II) complexes. Dalton Trans 46:165–177Google Scholar
  77. 77.
    Mikhaylov DY, Budnikova YH, Gryaznova TV, Krivolapov DV, Litvinov IA, Vicic DA, Sinyashin OG (2009) Electrocatalytic fluoroalkylation of olefins. J Organomet Chem 694:3840–3843Google Scholar
  78. 78.
    Wei D, Zhu X, Niu JL, Song MP (2016) High-valent-cobalt-catalyzed C–H functionalization based on concerted metalation–deprotonation and single-electron-transfer mechanisms. ChemCatChem 8:1242–1263Google Scholar
  79. 79.
    Pellissier H, Clavier H (2014) Enantioselective cobalt-catalyzed transformations. Chem Rev 114:2775–2823PubMedGoogle Scholar
  80. 80.
    Tilly D, Dayaker G, Bachu P (2014) Cobalt mediated C–H bond functionalization: emerging tools for organic synthesis. Catal Sci Technol 4:2756–2777Google Scholar
  81. 81.
    Cahiez G, Moyeux A (2010) Cobalt-catalyzed cross-coupling reactions. Chem Rev 110:1435–1462PubMedGoogle Scholar
  82. 82.
    Hess W, Treutwein J, Hilt G (2008) Cobalt-catalysed carbon-carbon bond-formation reactions. Synthesis 22:3537–3562Google Scholar
  83. 83.
    Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:1–7Google Scholar
  84. 84.
    Arends I, Sheldon R, Hanefeld U (2007) Green chemistry and catalysis. Wiley, WeinheimGoogle Scholar
  85. 85.
    Kemeling GM (2012) Solvent choices and sustainable chemistry. ChemSusChem 5:2291–2292PubMedGoogle Scholar
  86. 86.
    Izutsu K (2009) Electrochemistry in nonaqueous solutions, 2nd edn. Wiley, WeinheimGoogle Scholar
  87. 87.
    Luca OR, Gustafson JL, Maddox SM, Fenwicka AQ, Smith DC (2015) Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry. Org Chem Front 2:823–848Google Scholar
  88. 88.
    Polleux L, Labbé E, Buriez O, Périchon J (2005) CoI- and Co0-bipyridine complexes obtained by reduction of CoBr2bpy: electrochemical behaviour and investigation of their reactions with aromatic halides and vinylic acetates. Chem Eur J 11:4678–4686PubMedGoogle Scholar
  89. 89.
    Gomes P, Gosmini C, Nédélec J-Y, Périchon J (2000) Cobalt bromide as catalyst in electrochemical addition of aryl halides onto activated olefins. Tetrahedron Lett 41:3385–3388Google Scholar
  90. 90.
    Budnikova YG, Kafiyatullina AG, Kargin YM, Sinyashin OG (2003) Electrochemical reduction of cobalt and nickel complexes with ligands stabilizing metal in low oxidation state. Russ Chem Bull 52:1504–1511Google Scholar
  91. 91.
    Budnikova YG, Kafiyatullina AG, Kargin YM, Sinyashin OG (2001) Kinetic regularities of electrochemical reduction of organic halides under the action of cobalt complexes with 2,2′-bipyridine. Russ J Gen Chem 71:231–233Google Scholar
  92. 92.
    Buettner GR (1987) Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biol Med 3:259–303Google Scholar
  93. 93.
    Haire LD, Krygsman PH, Janzen EG, Oehler UM (1988) Correlation of radical structure with EPR spin adduct parameters: utility of the proton, carbon-13, and nitrogen-14 hyperfine splitting constants of aminoxyl adducts of PBN-nitronyl-13C for three-parameter scatter plots. J Org Chem 53:4535–4542Google Scholar
  94. 94.
    Sheberla D, Tumanskii B, Tomasik AC, Mitra A, Hill NJ, West R, Apeloig Y (2010) Different electronic structure of phosphonyl radical adducts of N-heterocyclic carbenes, silylenes and germylenes: EPR spectroscopic study and DFT calculations. Chem Sci 1:234–241Google Scholar
  95. 95.
    Tumanskii B, Sheberla D, Molev G, Apeloig Y (2007) Dual character of arduengo carbene–radical adducts: addition versus coordination product. Angew Chem Int Ed 46:7408–7411Google Scholar
  96. 96.
    Hoffman R (2007) Phosphorus-31 NMR. Hebrew University, JerusalemGoogle Scholar
  97. 97.
    Tang S, Liu Y, Lei A (2018) Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation cell. Chem 4(1):27–45Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of Russian Academy of SciencesKazanRussian Federation

Personalised recommendations