Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of Calcination Temperature on Activity and Selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 Catalysts for CO2 Methanation

  • 393 Accesses

  • 11 Citations

Abstract

Herein, we studied the influence of calcination temperature (500–800 °C) of Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts on the specific surface area, pore volume, crystalline size, lattice parameter, chemical bonding and oxidation states, nickel dispersion and CH4/CO production rate in CO2 methanation. In general, the catalytic performance revealed that Zr doping catalysts could increase the CH4 production rate. Combined with the production rate and the characterizations results, we found that the combination of nickel dispersion, peak area of CO2–TPD and OII/(OII + OI)) play the critical role in increasing the CH4 production rate. It is well to be mentioned that the CO production rate is strongly influenced by the nickel dispersion. Furthermore, the in-situ DRIFTS confirmed that the CO originates from the decomposition of H-assisted formate species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Mikkelsen M, Jorgensen M, Krebs FC (2013) Energy Environ Sci 3:43–81

  2. 2.

    Wang W, Wang SP, Ma XB, Gong JL (2011) Chem Soc Rev 40:3703–3727

  3. 3.

    Lunde PJ, Kester FL (1974) Ind Eng Chem Process Des Dev 13:27–33

  4. 4.

    Ma J, Sun NN, Zhang XL, Zhao N, Xiao FK, Wei W, Sun YH (2009) Catal Today 148:221–231

  5. 5.

    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) Chem Rev 115:12936–12973

  6. 6.

    Zhang ZF, Hu SQ, Song JL, Li WJ, Yang GY, Han BX (2009) ChemSusChem 2:234–238

  7. 7.

    Li YH, Junge K, Beller M (2013) ChemCatChem 5 pp 1072–1074

  8. 8.

    An X, Zuo YZ, Zhang Q, Wang DZ, Wang JF (2008) Ind Eng Chem Res 47:547–6554

  9. 9.

    Song CS (2006) Catal Today 115:2–32

  10. 10.

    Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) Energy Environ Sci 2:315–321

  11. 11.

    Kuśmierz M (2008) Catal Today 137:429–432

  12. 12.

    Du GA, Lim SY, Yang YH, Wang C, Pfefferle L, Haller GL (2007) J Catal 249:370–379

  13. 13.

    Hetterley RD, Mackey R, Jones JTA, Khimyak YZ, Fogg AM, Kozhevnikov IV (2008) J Catal 258:250–255

  14. 14.

    Lang YQ, Wang QQ, Xing JM, Zhang B, Liu HZ (2008) AIChE J 54:2303–2309

  15. 15.

    Wang Q, O’Hare D (2012) Chem Rev 112:4124–4155

  16. 16.

    Wei M, Zhang X, Evans DG, Duan X, Li XJ, Chen H (2007) AIChE J 53:2916–2924

  17. 17.

    Ang ML, Oemar U, Saw ET, Mo L, Kathiraser Y, Chia BH, Kawi S (2014) ACS Catal 4:3237–3248

  18. 18.

    Bian ZF, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8

  19. 19.

    Peebles DE, Goodman DW, White JM (1983) J Phys Chem 87:4378–4387

  20. 20.

    Marwood M, Doepper R, Renken A (1997) Appl Catal A 151:223–246

  21. 21.

    Falconer JL, Zagli AE (1980) J Catal 62:280–285

  22. 22.

    Fujita S, Terunuma H, Kobayashi H, Takezawa N (1987) React Kinet Catal Lett 33:179–184

  23. 23.

    Schild C, Wokaun A, Baiker A (1990) J Mol Catal 63:243–254

  24. 24.

    Pan QS, Peng JX, Wang S, Wang SD (2014) Catal Sci Technol 4:502–509

  25. 25.

    Aldana PAU, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catal Today 215:201–207

  26. 26.

    Aziz MAA, Jalil AA, Triwahyono S, Sidik SM (2014) Appl Catal A 486:115–122

  27. 27.

    Tada S, Yokoyama M, Kikuchi R, Haneda T, Kameyama H (2013) J Phys Chem C 117:14652–14658

  28. 28.

    Yu Y, Zhong L, Zhong Q, Cai W (2016) RSC Adv 6:50680–50687

  29. 29.

    prymak L, Kalevaru VN, Wohlrab S, Martin A (2015) Catal Sci Technol 5:2322 – 2231

  30. 30.

    Gabal MA, Angari YM, Al-Juaid SS (2010) J Alloys Compd 492:411–415

  31. 31.

    Wang SP, Zheng XC, Wang XY, Wang SR, Zhang SM, Yu LH, Huang WP, Wu SH (2005) Catal Let 105:163–168

  32. 32.

    Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Angew Chem Int Ed 44:2782–2785

  33. 33.

    Wang N, Shen K, Yu XP, Qian WZ, Chu W (2013) Catal Sci Technol 3:2278–2287

  34. 34.

    Ashok J, Ang ML, Terence PZL, Kawi S (2016) ChemCatChem 8:1308–1318

  35. 35.

    Béche E, Charvin P, Peranau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264–267

  36. 36.

    Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481–12888

  37. 37.

    Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS (2004) Appl Cataly A 276:231–239

  38. 38.

    Pan YX, Liu CJ, Mei DH, Ge QF (2010) Langmuir 26:5551–5558

  39. 39.

    Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, Kawi S (2014) J Catal 314:32–46

  40. 40.

    Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF Rodriguez JA (2014) Science 345:546–550

  41. 41.

    Holmgren B, Andersson D, Duprez (1999) Appl Catal B 22:215–230

  42. 42.

    Li Y, Sakata T, Arai K, Domen KI, Maruya T, Onishi (1989) J Chem Soc Faraday Trans 85:1451–1461

  43. 43.

    Vimont JC, Lavalley A, Sahibed-Dine CO, Arean MR, Delgado M, Daturi (2005) J Phys Chem B 109:9656–9664

  44. 44.

    Zhu F, Zhu GL, Zhou S (2015) ChemSusChem 8:609–612

  45. 45.

    Wang F, He S, Chen H, Wang B, Zheng LR, Wei M, Evans DG, Duan X (2016) J Am Chem Soc 138:6298–6305

  46. 46.

    Kitla A, Safonova OV, Föttinger K (2013) Catal Lett 143:517–530

  47. 47.

    Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashimoto K (2016) Appl Surf Sci 388:653–663

  48. 48.

    Resini T, Venkov K, Hadjiivanov S, Presto P, Riani R, Marazza G, Ramis G, Busca (2009) Appl Catal A 353:137–143

  49. 49.

    Gamarra C, Belver M, Fernández-Garcia A, Martínez-Arias (2011) J Am Chem Soc 129:12064–12065

  50. 50.

    Hoang L, Berndt H, Lieske H (1995) Catal Lett 31:165–172

  51. 51.

    Ojamäe L, Aulin C, Pedersen H, Käll PO (2006) J Colloid Interface Sci 296:71–78

  52. 52.

    Busca G, Lamotte J, Lavalley J, Lorenzelli V, Erba C (1987) J Am Chem Soc 109:5197–5202

  53. 53.

    Finocchio M, Daturi C, Binet JC, Lavalley G, Blanchard (1999) Catal Today 52:53–63

  54. 54.

    Avdeev VI, Parmon VN (2011) J Phys Chem C 115:21755–21762

  55. 55.

    Benitez JJ, Carrizosa I, Odriozola JA (1993) Appl Surf Sci 68:565–573

Download references

Acknowledgements

This work was financially supported by the National University of Singapore and NEA Project (ETRP 1501103, R279-000-491-279), A*STAR for the funding from AME IRG 2017 Project R279-000-509-305, Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province (BY2016004-09), Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2015062, BA2016055 and BA2017095), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education of Jiangsu Higher Education Institutions. Yang Yu would like to thank the China Scholarship Council for financially supporting his Ph.D. work.

Author information

Correspondence to Qin Zhong or Sibudjing Kawi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Bian, Z., Song, F. et al. Influence of Calcination Temperature on Activity and Selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 Catalysts for CO2 Methanation. Top Catal 61, 1514–1527 (2018). https://doi.org/10.1007/s11244-018-1010-6

Download citation

Keywords

  • CO2 methanation
  • Ni/CeO2
  • Ni/Ce0.8Zr0.2O2
  • Calcination temperature
  • In-situ DRIFTS