Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vanadium Complexes Based Polymer Supported Catalysts: A Brief Account of Research from Our Group

  • 199 Accesses

  • 1 Citations

Abstract

Solid supported catalysts can go a long way in developing catalyst based technology because of their high efficiency with recyclability and easy separation from the reaction mixture. Immobilizations of homogeneous catalysts through covalent bond with chloromethylated polystyrene cross-linked with divinylbenzene and develop them as environmentally safe heterogeneous catalysts for oxidation reaction have attracted attention in recent years. Recently, effort from our research laboratory was to synthesize new recyclable polymer-supported vanadium complexes based heterogeneous catalysts. Thus, chloromethylated polystyrene cross linked with 5% divinylbenzene was used as support to prepare variety of polymer supported vanadium catalysts. These catalysts have successfully been used for the oxidation and oxidative bromination of various organic substrates. Keeping in mind the industrial usage of these heterogeneous catalysts, the leaching and recycle ability of all polymer-supported catalysts have also been tested. Most catalysts are stable and do not leach during the catalytic reactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Abbreviations

PS–CH2–Cl:

Chloromethylated polystyrene cross-linked with divinyl benzene

PS–im:

Imidazolomethylpolystyrene

Hhebmz:

2-Hydroxyethylbenzimidazole

Hhmbmz:

2-Hydroxymethylbenzimidazole

Hhpbmz:

2-(2-Hydroxyphenyl)benzimidazole

2-pybmz:

2-(2-Pyridyl)benzimidazole

3-pybmz:

2-(3-Pyridyl)benzimidazole

Hpan:

1-(2-Pyridylazo)-2-naphthol

H2fsal–β-ala:

Schiff base derived from 3-formylsalicylic acid and β-alanine

H2fsal–DL-ala:

Schiff base derived from 3-formylsalicylic acid and DL-alanine

H2fsal–L-ile:

Schiff base derived from 3-formylsalicylic acid and isoleucine

H2sal–his:

Schiff base derived from salicylaldehyde and histidine

H2sal–cis:

Schiff base derived from salicylaldehyde and cysteine

H2fsal–amp:

Schiff base derived from 3-formylsalicylic acid and 2-amino-2-methylpropanol

H2fsal–dmen:

Schiff base derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine

H2fsal–aepy:

Schiff base derived from 3-formylsalicylic acid and 2-aminoethylpyridine

H2fsal–pa:

Schiff base derived from 3-formylsalicylic acid and 3-aminopropanol

H2fsal–ea:

Schiff base derived from 3-formylsalicylic acid and 2-aminoethanol

H2sal–iah:

Schiff base derived from salicylaldehyde and indole-3-acetic hydrazide,

H2sal–bhz:

Schiff base derived from salicylaldehyde and benzoylhydrazide

H2sal–inh:

Schiff base derived from salicylaldehyde and isonicotinoylhydrazide

H2sal–ohyba:

Schiff base derived from salicylaldehyde and o-hydroxybenzylamine

Hacpy–bhz:

Schiff base derived from acetylpyridine and benzoylhydrazide

Hacpy–nah:

Schiff base derived from acetylpyridine and nicotinoylhydrazide

Hacpy–inh:

Schiff base derived from acetylpyridine and isonicotinoylhydrazide

Hacpy–fah:

Schiff base derived from acetylpyridine and 2-furoylhydrazide

Hbzpy–bhz:

Schiff base derived from benzoylpyridine and benzoylhydrazide

Hbzpy–nah:

Schiff base derived from benzoylpyridine and nicotinoylhydrazide

Hbzpy–inh:

Schiff base derived from benzoylpyridine and isonicotinoylhydrazide

H2salten:

Schiff base derived from salicylaldehyde and diethylenetriamine

H3sal–dahp:

Schiff base derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane

References

  1. 1.

    Clark JH, Macquarrie DJ (1997) Org Process Res Dev 1:149–162

  2. 2.

    Maurya MR, Kumar A, Pessoa JC (2011) Coord Chem Rev 255:2315–2344

  3. 3.

    Trilla M, Pleixats R, Man MWC, Bied C, Moreau JJE (2008) Adv Synth Catal 350:577–590

  4. 4.

    Jain SL, Rana BS, Singh B, Sinha AK, Bhaumik A, Nandi M, Sain B (2010) Green Chem 12:374–377

  5. 5.

    Joseph T, Deshpande SS, Halligudi SB, Vinu A, Ernst S, Hartmann M (2003) J Mol Catal A 206:13–21

  6. 6.

    Joseph T, Halligudi SB (2005) J Mol Catal A 229:241–247

  7. 7.

    Wang R, Gao B, Jiao W (2009) Appl Surf Sci 255:4109–4113

  8. 8.

    Moghadam M, Tangestaninejad S, Mirkhani V, Baltork IM, Mirbagheri NS (2010) J Organomet Chem 695:2014–2021

  9. 9.

    Parihar S, Pathan S, Jadeja RN, Patel A, Gupta VK (2012) Inorg Chem 51:1152–1161

  10. 10.

    Merrifield RB (1963) J Am Chem Soc 85:2149–2154

  11. 11.

    Seebach D, Marti RE, Hintermann T (1996) Helv Chim Acta 79:1710–1740

  12. 12.

    Hinzen B, Ley SV (1997) J Chem Soc Perkin Trans (1) 13:1907–1908

  13. 13.

    Maurya MR (2012) Curr Org Chem 16:73–88

  14. 14.

    Maurya MR, Pessoa JC (2011) J Organomet Chem 696:244–254

  15. 15.

    Pessoa JC, Maurya MR (2017) Inorg Chim Acta 455:415–428

  16. 16.

    Ramaswamy AV (2002) In: Viswanathan B, Sivasanker S, Ramaswamy AV (eds) Catalysis: principles and applications. Narosa Publishing House, New Delhi, pp 206–219

  17. 17.

    Sherrington DC (2000) Catal Today 57:87–104

  18. 18.

    Sherrington DC (1988) Pure Appl Chem 60:401–414

  19. 19.

    Arnold U (2008) Metal species supported on organic polymers as catalysts for the epoxidation of alkenes. In: Mechanisms in homogeneous and heterogeneous epoxidation. Catalysis. Elsevier B.V, Amsterdam, pp 387–411

  20. 20.

    Sherrington DC, Simpson S (1991) J Catal 131:115–126

  21. 21.

    Sherrington DC, Simpson S (1993) React Polym 19:13–25

  22. 22.

    McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3299

  23. 23.

    Leadbeater NE, Marco M (2002) Chem Rev 102:3217–3273

  24. 24.

    Gupta KC, Sutar AK, Lin C-C (2009) Coord Chem Rev 253:1926–1946

  25. 25.

    Walmsley RS, Hlangothi P, Litwinski C, Nyokong T, Torto N, Tshentu ZR (2013) J Appl Polym Sci 127:4719–4725

  26. 26.

    Walmsley RS, Litwinski C, Antunes E, Hlangothi P, Hosten E, McCleland C, Nyokong T, Torto N, Tshentu ZR (2013) J Mol Catal A 379:94–102

  27. 27.

    Salunke SB, Babu NS, Chen CT (2011) Adv Synth Catal 353:1234–1240

  28. 28.

    Boruah JJ, Kalita D, Das SP, Paul S, Islam NS (2011) Inorg Chem 50:8046–8062

  29. 29.

    Walmsley RS, Ogunlaja AS, Coombes MJ, Chidawanyika W, Litwinski C, Torto N, Nyokong T, Tshentu ZR (2012) J Mater Chem 22:5792–5800

  30. 30.

    Ogunlaja AS, Khene S, Antunes E, Nyokong T, Torto N, Tshentu ZR (2013) Appl Catal A 462:157–167

  31. 31.

    Silva TFS, MacLeod TCO, Martins LMDRS., da Silva MFCG., Schiavon MA, Pombeiro AJL (2013) J Mol Catal A 367:52–60

  32. 32.

    Islam SM, Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K (2014) J Organomet Chem 761:169–178

  33. 33.

    Esteves MA, Gigante B, Santos C, Guerreiro AM, Baleizão C (2013) Catal Today 218:65–69

  34. 34.

    Syamal A, Singh MM (1993) React Polym 21:149–158

  35. 35.

    Maurya MR, Sikarwar S (2007) Catal Commun 8:2017–2024

  36. 36.

    Maurya MR, Kumar U, Manikandan P (2006) Dalton Trans 3561–3575

  37. 37.

    Maurya MR, Kumar N (2014) J Mol Catal A 383:172–181

  38. 38.

    Maurya MR, Kumar N, Chaudhary N (2015) Polyhedron 97:103–111

  39. 39.

    Maurya MR, Chaudhary N, Avecilla F, Correia I (2015) J Inorg Biochem 147:181–192

  40. 40.

    Maurya MR, Kumar M, Sikarwar S (2008) Catal Commun 10:187–191

  41. 41.

    Maurya MR, Sikarwar S, Joseph T, Manikandan P, Halligudi SB (2005) React Funct Polym 63:71–83

  42. 42.

    Maurya MR, Sikarwar S, Manikandan P (2006) Appl Catal A 315:74–82

  43. 43.

    Maurya MR, Kumar M, Kumar U (2007) J Mol Catal A 273:133–143

  44. 44.

    Maurya MR, Kumar M, Kumar A, Pessoa JC (2008) Dalton Trans 4220–4232

  45. 45.

    Maurya MR, Sikarwar S (2007) J Mol Catal A 263:175–185

  46. 46.

    Maurya MR, Kumar U, Manikandan P (2007) Eur J Inorg Chem 2007:2303–2314

  47. 47.

    Maurya MR, Kumar U, Correia I, Adão P, Pessoa JC (2008) Eur J Inorg Chem 2008:577–587

  48. 48.

    Maurya MR, Arya A, Kumar U, Kumar A, Avecilla F, Pessoa JC (2009) Dalton Trans 9555–9566

  49. 49.

    Maurya MR, Arya A, Kumar A, Pessoa JC (2009) Dalton Trans 2185–2195

  50. 50.

    Maurya MR, Arya A, Kumar A, Kuznetsov ML, Avecilla F, Pessoa JC (2010) Inorg Chem 49:6586–6600

  51. 51.

    Maurya MR, Chaudhary N, Kumar A, Avecilla F, Pessoa JC (2014) Inorg Chim Acta 420:24–38

  52. 52.

    Maurya MR, Chaudhary N, Avecilla F (2014) Polyhedron 67:436–448

  53. 53.

    Maurya MR, Uprety B, Chaudhary N, Avecilla F (2015) Inorg Chim Acta 434:230–238

  54. 54.

    Maurya MR, Chaudhary N, Avecilla F, Adão P, Pessoa JC (2015) Dalton Trans 44:1211–1232

  55. 55.

    Maurya MR, Kumar M, Sikarwar S (2006) React Funct Polym 66:808–818

  56. 56.

    Müller TE, Beller M (1998) Chem Rev 98:675–703

  57. 57.

    Maurya MR, Arya A, Adão P, Pessoa JC (2008) Appl Catal A 351:239–252

  58. 58.

    Hulea V, Dumitriu E (2004) Appl Catal A 277:99–106

  59. 59.

    Li K, Frost JW (1998) J Am Chem Soc 120:10545–10546

  60. 60.

    Venkitasubramanian P, Daniels L, Das S, Lamm AS, Rosazza JPN (2008) Enzym Microb Technol 42:130–137

  61. 61.

    Li T, Rosazza JPN (2000) Appl Environ Microbiol 66:684–687

  62. 62.

    Priefert H, Rabenhorst J, Steinbüchel A (2001) Appl Microbiol Biotechnol 56:296–314

Download references

Acknowledgements

M. R. M. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi for financial support of the work (Grant Number EMR/2014/000529).

Author information

Correspondence to Mannar R. Maurya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.R. Vanadium Complexes Based Polymer Supported Catalysts: A Brief Account of Research from Our Group. Top Catal 61, 1500–1513 (2018). https://doi.org/10.1007/s11244-018-1006-2

Download citation

Keywords

  • Polymer supported complexes
  • Vanadium complexes
  • Catalysts
  • Oxidation reactions
  • Oxidative halogenation