Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Oxygen Assisted Morphological Changes of Pt Nanosized Crystals

  • 219 Accesses

Abstract

Thermal faceting of clean and oxygen-covered Pt nanocrystals was investigated at the nanoscale by means of field ion microscopy (FIM) and field emission microscopy (FEM) in the 500–700 K temperature range. FIM and FEM are used to study the morphology of the crystal prepared in the form of a sharp tip. The tip extremity is observed with nanoscale lateral resolution and corresponds to a suitable model of a single nanoparticle of a real catalyst. By contrast to similar studies on iridium, palladium and rhodium, small oxygen exposures (~ 10 L) and annealing treatments at 700 K did not lead to strong surface modifications. The field ion micrograph was similar to the pattern obtained for the nanocrystals annealed under vacuum conditions, revealing only low index {001} and {111} facets. For higher oxygen doses, i.e. ≥ 100 L, and in field-free conditions, the flat {100}, {111} and {113} facets were developed after annealing the tip at 700 K, which was attributed to the formation of oxide layers. For comparison, the surface modification was studied under oxygen-rich conditions but in the presence of an electric field at 700 K. The results showed that only former reconstruction was observed regardless of oxygen doses. These results are also promising in the frame of engineering catalysts since different gas exposure may lead to the extension or shrinking of specific facets, which may impact the efficiency of the catalyst.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    King DA, Woodruff DP (1982) The chemical physics of solid surfaces and heterogeneous catalysis, vol 4. Elsevier, Amsterdam

  2. 2.

    Freund HJ (2002) Surf Sci 500:271–299

  3. 3.

    Arblaster JW (2005) Platin Met Rev 49:141–149

  4. 4.

    Seriani N, Jin Z, Pompe W, Colombi Ciacchi L (2007) Phys Rev B 76:155421

  5. 5.

    Bernhardt TM, Heiz U, Landman U (2007) Nanocatalysis. Springer, Berlin

  6. 6.

    Croy JR, Mostafa S, Liu J, Sohn YH, Heinrich H, Roldan Cuenya B (2007) Catal Lett 191:209–216

  7. 7.

    Mostafa S, Croy JR, Heinrich H, Roldan Cuenya B (2009) Appl Catal A 366:353–362

  8. 8.

    Rinnemo M (1997) Surf Sci 376:297–309

  9. 9.

    McCrea KR, Parker JS, Somorjai GA (2002) J Phys Chem B 106:10854–10863

  10. 10.

    Engel T, Ertl G (1979) Adv Catal 28:1–78

  11. 11.

    Laidler KJ, Meiser JH (1982) Physical chemistry, Benjamin/Cummings Pub. Co., Menlo Park

  12. 12.

    Sandert M, Imbihl R, Schuster R, Barth JV, Ertl G (1992) Surf Sci 271:159–169

  13. 13.

    Parkinson CR, Walker M, McConville CF (2003) Surf Sci 545:19–33

  14. 14.

    Miller DJ, Öberg H, Kaya S, Sanchez Casalongue H, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Phys Rev Lett 107:195502

  15. 15.

    Devarajan SP, Hinojosa JA Jr, Weaver JF (2008) Surf Sci 602:3116–3124

  16. 16.

    Ertl G, Neumann M, Streit KM (1977) Surf Sci 64:393–410

  17. 17.

    Walker AV, Klötzer B, King DA (1998) J Chem Phys 109:6879–6888

  18. 18.

    Freyer N, Kiskinova M, Pirug G, Bonze HP (1986) Surf Sci 166:206–220

  19. 19.

    Helveg S, Li WX, Bartelt NC, Horch S, Lægsgaard E, Hammer B, Besenbacher F (2007) Phys Rev Lett 98:115501

  20. 20.

    Li WX, Österlund L, Vestergaard EK, Vang RT, Matthiesen J, Pedersen TM, Lægsgaard E, Hammer B, Besenbacher F (2004) Phys Rev Lett 93:146104

  21. 21.

    Somorjai GA, Aliaga C (2010) Langmuir 26:16190–16203

  22. 22.

    Shao M, Peles A, Shoemaker K (2011) Nano Lett 11:3714–03719

  23. 23.

    Tian N, Zhou ZY, Sun SG (2008) J Phys Chem C 112:19801–19817

  24. 24.

    Somorjai GA, Park JY (2008) Chem Soc Rev 37:2155–2162

  25. 25.

    Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357

  26. 26.

    Zhang H, Jin M, Xia Y (2012) Angew Chem Int Ed 51:7656–7673

  27. 27.

    Madey TE, Chen W, Wang H, Kaghazchi P, Jacob T (2008) Chem Soc Rev 37:2310–2327

  28. 28.

    Yoshida H, Matsuura K, Kuwauchi Y, Kohno H, Shimada S, Haruta M, Takeda S (2011) Appl Phys Express 4:065001

  29. 29.

    Medvedev KV, Suchorski Y, Voss C, Visart de Bocarmé T, Bär T, Kruse N (1998) Langmuir 14:6151–6157

  30. 30.

    Dicke J, Rotermund HH, Lauterbach J (2000) Surf Sci 454–456:352–357

  31. 31.

    Sadeghi P, Dunphy K, Punckt C, Rotermund HH (2012) J Phys Chem C 116:4686–4691

  32. 32.

    Voss C, Kruse N (1995) Appl Surf Sci 87/88:134–139

  33. 33.

    Barroo C, Gilis N, Lambeets SV, Devred F, Visart de Bocarmé T (2014) Appl Surf Sci 304:2–10

  34. 34.

    Gorodetskii VV, Elokhina VI, Bakker JW, Nieuwenhuys BE (2005) Catal Today 105:183–205

  35. 35.

    Genty E, Jacobs L, Visart de Bocarmé T, Barroo C (2017) Catalysts 7(5):134

  36. 36.

    Bär T, Visart de Bocarmé T, Kruse N (2000) Surf Sci 454–456:240–245

  37. 37.

    Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2010) J Phys Chem C 114:2220–2226

  38. 38.

    Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2011) J Phys Chem C 115:2761–2768

  39. 39.

    McEwen JS, Gaspard P, De Decker Y, Barroo C, Visart de Bocarmé T, Kruse N (2010) Langmuir 26:16381–16391

  40. 40.

    Barroo C, De Decker Y, Visart de Bocarmé T, Kruse N (2014) J Phys Chem C 118:6839–6846

  41. 41.

    Müller EW, Tsong TT (1969) Field ion microscopy: principles and applications. Elsevier, New York

  42. 42.

    Bagot PAJ, Cerezo A, Smith GDW (2007) Surf Sci 601:2245–2255

  43. 43.

    Visart de Bocarmé T, Kruse N (2001) Top Catal 14:35–42

  44. 44.

    Chen Q, Richardson NV (2003) Prog Surf Sci 73:59–77

  45. 45.

    Seriani N, Mittendorfer F (2008) J Phys Condens Matter 20:184023

  46. 46.

    Voss C, Kruse N (1998) Surf Sci 409:252–257

  47. 47.

    Kruse N, Gaussmann A (1993) Appl Surf Sci 67:160–165

  48. 48.

    Yamanaka T, Xue QK, Kimura K, Matsushima T, Hasegawa Y, Sakura T (2000) Jpn J Appl Phys 39:3562–3565

  49. 49.

    Jenkins SJ (2001) Surf Sci 494:59–65

  50. 50.

    Zhu T, Sun SG, van Santen RA, Hensen EJM (2013) J Phys Chem C 117:11251–11257

  51. 51.

    Foiles SM (1987) Surf Sci 191:L779–L786

  52. 52.

    Lin RJ, Fu TY (2012) Surf Interface Anal 44:658–661

  53. 53.

    Yamanaka T, Matsushima T, Tanaka SI, Kamada M (1996) Surf Sci 349:119–128

  54. 54.

    Voss C, Gaussmann A, Kruse N (1993) Appl Surf Sci 67:142–146

  55. 55.

    Wang T, Schmidt LD (1981) J Catal 71:411–422

  56. 56.

    Li T, Marquis EA, Bagot PAJ, Tsang SCE, Smith GDW (2011) Catal Today 175:552–557

  57. 57.

    Suchorski Y (1998) Ultramicroscopy 73:139–145

  58. 58.

    Muller O, Roy R (1968) J Less-Common Met 16:129–146

  59. 59.

    Punnoose A, Seehra MS, Wende I (2001) Fuel Process Technol 74:33–47

  60. 60.

    Wang CB, Lin HK, Hsu SN, Huang TH, Chiu HC (2002) J Mol Catal A 188:201–208

  61. 61.

    Seriani N, Pompe W, Ciacchi LC (2006) J Phys Chem B 110:14860–14869

  62. 62.

    Weaver JF (2013) Chem Rev 113:4164–4215

  63. 63.

    Ono LK, Yuan B, Heinrich H, Roldan Cuenya B (2010) J Phys Chem C 114:22119–22133

  64. 64.

    Samsonov GV (1982) The oxide handbook, 2nd edn. Plenum Publishing Corporation, New York

  65. 65.

    Weaver JF, Kan HH, Shumbera RB (2008) J Phys: Condens Matter 20:184015

  66. 66.

    Ellinger C, Stierle A, Robinson IK, Nefedov A, Dosch HJ (2008) Phys Condens Matter 20:184013

  67. 67.

    Moors M, Visart de Bocarmé T, Kruse N (2007) Catal Today 124:61–70

  68. 68.

    Voss C, Kruse N (1998) Surf Sci 416:L1114–L1117

  69. 69.

    Visart de Bocarmé T, Chau TD, Kruse N (2007) Surf Interface Anal 39:166–171

  70. 70.

    Derry GN, Ross PNA (1985) J Chem Phys 82:2772–2778

  71. 71.

    Lambeets SV, Barroo C, Owczarek S, Genty E, Gilis N, Kruse N, Visart de Bocarmé T (2017) J Phys Chem C 121:16238–16249

Download references

Acknowledgements

S.O., C.B., R.B. and T.V.d.B. thank Wallonia-Brussels International for the Bilateral Cooperation Agreement, and the Bilateral Cooperation between the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Polish Academy of Sciences (PAN). S.V.L. and C.B. thank the F.R.S.-FNRS for financial support (PhD grant from FRIA and Postdoctoral fellowship from FNRS, respectively). This work was supported by a research grant from University of Wroclaw (No. 1425/M/FD/15).

Author information

Correspondence to Sylwia Owczarek or Cédric Barroo or Thierry Visart de Bocarmé.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Owczarek, S., Lambeets, S.V., Barroo, C. et al. Oxygen Assisted Morphological Changes of Pt Nanosized Crystals. Top Catal 61, 1313–1322 (2018). https://doi.org/10.1007/s11244-018-0984-4

Download citation

Keywords

  • Platinum
  • Nanocatalysis
  • Model catalysis
  • Surface reconstruction
  • Field emission techniques
  • Field ion microscopy