Advertisement

Topics in Catalysis

, Volume 61, Issue 12–13, pp 1247–1256 | Cite as

Effect of Gold on the Adsorption Properties of Acetaldehyde on Clean and h-BN Covered Rh(111) Surface

  • Arnold Péter Farkas
  • Ádám Szitás
  • Gábor Vári
  • Richárd Gubó
  • László Óvári
  • András Berkó
  • János Kiss
  • Zoltán Kónya
Original Paper

Abstract

Auger electron spectroscopy, high-resolution electron energy loss spectroscopy and temperature programmed desorption methods have been used in order to investigate the adsorption properties and reactions of acetaldehyde on gold decorated rhodium and BN/Rh(111) surfaces. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements were carried out to characterize the gold nanoparticles on clean and hexagonal boron nitride (h-BN) covered Rh(111). The adsorption of acetaldehyde was not completely hindered by gold atoms; however, depending on the structure of the outermost bimetallic layer (surface alloy) the dissociation of the parent molecule was suppressed, namely the production of carbon monoxide was inhibited by the gold domains. Our measurements with acetaldehyde on Au/h-BN/Rh(111) confirmed the observation that the lack of suitable adsorption sites eliminates the formation of CO. Nevertheless, increased coverage of gold enhanced the amount of adsorbed aldehyde at low temperature. We may predict that the low reactivity of acetaldehyde on Au/h-BN/Rh(111) significantly determine the ethanol decomposition mechanism on this surface.

Keywords

Acetaldehyde Polymerization Rh(111) Boron nitride Effect of gold HREELS 

Notes

Acknowledgements

Financial support of this work by the Hungarian Research Development and Innovation Office through grants GINOP-2.3.2-15-2016-00013 and NKFIH OTKA K120115 is gratefully acknowledged. The ELI-ALPS project (GINOP-2.3.6-15-2015-00001) is supported by the European Union and co-financed by the European Regional Development Fund. This research was also supported by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2–11/1-2012-0001 ‘National Excellence Program’.

References

  1. 1.
    Davis JL, Barteau MA (1987) Decarbonylation and decomposition pathways of alcohol’s on Pd(111). Surf Sci 187:387–406.  https://doi.org/10.1016/S0039-6028(87)80064-X CrossRefGoogle Scholar
  2. 2.
    Davis JL, Barteau MA (1988) The influence of oxygen on the selectivity of alcohol conversion on the Pd(111) surface. Surf Sci 197:123–152.  https://doi.org/10.1016/0039-6028(88)90577-8 CrossRefGoogle Scholar
  3. 3.
    McCabe RW, Dimaggio CL, Madix RJ (1985) Adsorption and reactions of acetaldehyde on Pt(S)-[6(111) X (100)]. J Phys Chem 89:854–861.  https://doi.org/10.1021/j100251a028 CrossRefGoogle Scholar
  4. 4.
    Mavrikakis M, Barteau MA (1998) Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A Chem 131:135–147.  https://doi.org/10.1016/S1381-1169(97)00261-6 CrossRefGoogle Scholar
  5. 5.
    Raskó J, Kiss J (2005) Adsorption and surface reactions of acetaldehyde on alumina-supported noble metal catalysts. Catal Lett 101:71–77.  https://doi.org/10.1007/s10562-004-3752-y CrossRefGoogle Scholar
  6. 6.
    Raskó J, Kecskés T, Kiss J (2005) FT-IR and mass spectrometric studies on the interaction of acetaldehyde with TiO2-supported noble metal catalysts. Appl Catal A Gen 287:244–251.  https://doi.org/10.1016/j.apcata.2005.04.004 CrossRefGoogle Scholar
  7. 7.
    Roberts JM (1990) The atmospheric chemistry of organic nitrates. Atmos Environ 24A:243–287.  https://doi.org/10.1016/0960-1686(90)90108-Y CrossRefGoogle Scholar
  8. 8.
    Altshuller AP (1993) Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos Environ Part A Gen Top 27:21–32.  https://doi.org/10.1016/0960-1686(93)90067-9 CrossRefGoogle Scholar
  9. 9.
    Yee A, Morrison SJ, Idriss H (2000) Reactions of ethanol over M/CeO2 catalysts. Evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63:327–335.  https://doi.org/10.1016/S0920-5861(00)00476-4 CrossRefGoogle Scholar
  10. 10.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112:4094–4123CrossRefPubMedGoogle Scholar
  11. 11.
    Ferencz Z, Erdohelyi A, Baán K et al (2014) Effects of support and Rh additive on co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218.  https://doi.org/10.1021/cs500045z CrossRefGoogle Scholar
  12. 12.
    De Lima AFF, Colman RC, Zotin FMZ, Appel LG (2010) Acetaldehyde behavior over platinum based catalyst in hydrogen stream generated by ethanol reforming. Int J Hydrog Energy 35:13200–13205.  https://doi.org/10.1016/j.ijhydene.2010.09.030 CrossRefGoogle Scholar
  13. 13.
    Varga E, Ferencz Z, Oszkó A et al (2015) Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: an XPS study. J Mol Catal A Chem 397:127–133.  https://doi.org/10.1016/j.molcata.2014.11.010 CrossRefGoogle Scholar
  14. 14.
    Henderson MA, Zhou Y, White JM (1989) Polymerization and decomposition of acetaldehyde on Ru(001). J Am Chem Soc 111:1185–1193.  https://doi.org/10.1021/ja00186a004 CrossRefGoogle Scholar
  15. 15.
    Davis JL, Barteau MA (1989) Polymerization and decarbonylation reactions of aldehydes on the Pd(111) surface. J Am Chem Soc 111:1782–1792.  https://doi.org/10.1021/ja00187a035 CrossRefGoogle Scholar
  16. 16.
    Houtman CJ, Barteau MA (1991) Divergent pathways of acetaldehyde and ethanol decarbonylation on the Rh(111) surface. J Catal 130:528–546.  https://doi.org/10.1016/0021-9517(91)90133-O CrossRefGoogle Scholar
  17. 17.
    Kovács I, Farkas AP, Szitás Á et al (2017) Adsorption, polymerization and decomposition of acetaldehyde on clean and carbon-covered Rh(111) surfaces. Surf Sci.  https://doi.org/10.1016/j.susc.2017.05.016 CrossRefGoogle Scholar
  18. 18.
    Karatok M, Vovk EI, Shah AA et al (2016) Erratum: acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product (Surface Science (2015) 641 (289-293) DOI: 10.1016/j.susc.2015.04.005). Surf Sci 649:152.  https://doi.org/10.1016/j.susc.2016.01.011.CrossRefGoogle Scholar
  19. 19.
    Meng Q, Shen Y, Xu J et al (2012) Mechanistic understanding of hydrogenation of acetaldehyde on Au(111): a DFT investigation. Surf Sci 606:1608–1617.  https://doi.org/10.1016/j.susc.2012.06.014 CrossRefGoogle Scholar
  20. 20.
    Pan M, Flaherty DW, Mullins CB (2011) Low-temperature hydrogenation of acetaldehyde to ethanol on H-precovered Au(111). J Phys Chem Lett 2:1363–1367.  https://doi.org/10.1021/jz200577n CrossRefGoogle Scholar
  21. 21.
    Valden M (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650.  https://doi.org/10.1126/science.281.5383.1647 CrossRefPubMedGoogle Scholar
  22. 22.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166.  https://doi.org/10.1016/S0920-5861(96)00208-8 CrossRefGoogle Scholar
  23. 23.
    Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427–437.  https://doi.org/10.1016/S0926-860X(01)00847-X CrossRefGoogle Scholar
  24. 24.
    Dumbuya K, Cabailh G, Lazzari R et al (2012) Evidence for an active oxygen species on Au/TiO2(110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal Today 181:20–25.  https://doi.org/10.1016/j.cattod.2011.09.035 CrossRefGoogle Scholar
  25. 25.
    Liu L, Zhou Z, Guo Q et al (2011) The 2-D growth of gold on single-layer graphene/Ru(0001): enhancement of CO adsorption. Surf Sci 605:L47–L50.  https://doi.org/10.1016/j.susc.2011.04.040 CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zhang Y, Ma D et al (2013) Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res 6:887–896.  https://doi.org/10.1007/s12274-013-0365-z CrossRefGoogle Scholar
  27. 27.
    Gotterbarm K, Spath F, Bauer U et al (2015) Reactivity of graphene-supported Pt nanocluster arrays. ACS Catal 5:2397–2403.  https://doi.org/10.1021/acscatal.5b00245 CrossRefGoogle Scholar
  28. 28.
    Corso M (2004) Boron nitride nanomesh. Science 303:217–220.  https://doi.org/10.1126/science.1091979 CrossRefPubMedGoogle Scholar
  29. 29.
    Ng ML, Preobrajenski AB, Vinogradov AS, Mårtensson N (2008) Formation and temperature evolution of Au nanoparticles supported on the h-BN nanomesh. Surf Sci 602:1250–1255.  https://doi.org/10.1016/j.susc.2008.01.028 CrossRefGoogle Scholar
  30. 30.
    Koch HP, Laskowski R, Blaha P, Schwarz K (2011) Adsorption of gold atoms on the h-BN/Rh(111) nanomesh. Phys Rev B 84:1–7.  https://doi.org/10.1103/PhysRevB.84.245410 CrossRefGoogle Scholar
  31. 31.
    Koch HP, Laskowski R, Blaha P, Schwarz K (2012) Adsorption of small gold clusters on the h-BN/Rh(111) nanomesh. Phys Rev B 86:1–7.  https://doi.org/10.1103/PhysRevB.86.155404 CrossRefGoogle Scholar
  32. 32.
    Patterson MC, Habenicht BF, Kurtz RL et al (2014) Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111). Phys Rev B 89:1–10.  https://doi.org/10.1103/PhysRevB.89.205423 CrossRefGoogle Scholar
  33. 33.
    Farkas AP, Török P, Solymosi F et al (2015) Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(111) by electron spectroscopic methods. Appl Surf Sci 354:367–372.  https://doi.org/10.1016/j.apsusc.2015.05.060 CrossRefGoogle Scholar
  34. 34.
    McKee WC, Patterson MC, Huang D et al (2016) CO adsorption on Au nanoparticles grown on hexagonal boron nitride/Rh(111). J Phys Chem C 120:10909–10918.  https://doi.org/10.1021/acs.jpcc.6b01645 CrossRefGoogle Scholar
  35. 35.
    Gubó R, Vári G, Kiss J et al (2018) Tailoring the hexagonal boron nitride nanomesh on Rh(111) by gold. Phys Chem Chem Phys.  https://doi.org/10.1039/C8CP00790J CrossRefPubMedGoogle Scholar
  36. 36.
    Gazsi A, Koós A, Bánsági T, Solymosi F (2011) Adsorption and decomposition of ethanol on supported Au catalysts. Catal Today 160:70–78.  https://doi.org/10.1016/j.cattod.2010.05.007 CrossRefGoogle Scholar
  37. 37.
    Óvári L, Berkó A, Vári G et al (2016) The growth and thermal properties of Au deposited on Rh(111): formation of an ordered surface alloy. Phys Chem Chem Phys 18:25230–25240.  https://doi.org/10.1039/C6CP02128J CrossRefPubMedGoogle Scholar
  38. 38.
    Furukawa J, Saegusa T, Fujii H et al (1960) Crystalline polyaldehydes. Die Makromol Chem 37:149–152.  https://doi.org/10.1002/macp.1960.020370114 CrossRefGoogle Scholar
  39. 39.
    Zhao H, Kim J, Koel BE (2003) Adsorption and reaction of acetaldehyde on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys. Surf Sci 538:147–159.  https://doi.org/10.1016/S0039-6028(03)00602-2 CrossRefGoogle Scholar
  40. 40.
    Guan Y, Hensen EJM (2013) Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts. J Catal 305:135–145.  https://doi.org/10.1016/j.jcat.2013.04.023 CrossRefGoogle Scholar
  41. 41.
    Henderson MA, Radloff PL, White JM, Mims CA (1988) Surface chemistry of ketene on Ru(001). 1. Surface structures. J Phys Chem 92:11–41.  https://doi.org/10.1021/j100325a025 CrossRefGoogle Scholar
  42. 42.
    Ćavar E, Westerström R, Mikkelsen A et al (2008) A single h-BN layer on Pt(1 1 1). Surf Sci 602:1722–1726.  https://doi.org/10.1016/j.susc.2008.03.008 CrossRefGoogle Scholar
  43. 43.
    Frank M, Wolter K, Magg N et al (2001) Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surf Sci 492:270–284.  https://doi.org/10.1016/S0039-6028(01)01475-3 CrossRefGoogle Scholar
  44. 44.
    Rokuta E, Hasegawa Y, Suzuki K et al (1997) Phonon dispersion of an epitaxial monolayer film of hexagonal boron nitride on Ni(111). Phys Rev Lett 79:4609–4612.  https://doi.org/10.1103/PhysRevLett.79.4609 CrossRefGoogle Scholar
  45. 45.
    Berner S, Corso M, Widmer R et al (2007) Boron nitride nanomesh: functionality from a corrugated monolayer. Angew Chem Int Ed 46:5115–5119.  https://doi.org/10.1002/anie.200700234 CrossRefGoogle Scholar
  46. 46.
    Bus E, Miller JT, Van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587.  https://doi.org/10.1021/jp051660z CrossRefPubMedGoogle Scholar
  47. 47.
    Mavrikakis M, Stoltze P, Nørskov JK (2000) Making gold less noble. Catal Lett 64:101–106.  https://doi.org/10.1023/A:1019028229377 CrossRefGoogle Scholar
  48. 48.
    Yoon B (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–407.  https://doi.org/10.1126/science.1104168 CrossRefPubMedGoogle Scholar
  49. 49.
    Chen M, Cai Y, Yan Z, Goodman DW (2006) On the origin of the unique properties of supported Au nanoparticles. J Am Chem Soc 128:6341–6346.  https://doi.org/10.1021/ja0557536 CrossRefPubMedGoogle Scholar
  50. 50.
    Sterrer M, Yulikov M, Risse T et al (2006) When the reporter induces the effect: unusual IR spectra of CO on Au 1/MgO(001)/Mo(001). Angew Chem Int Ed 45:2633–2635.  https://doi.org/10.1002/anie.200504473 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arnold Péter Farkas
    • 1
    • 2
  • Ádám Szitás
    • 3
  • Gábor Vári
    • 3
  • Richárd Gubó
    • 2
    • 3
  • László Óvári
    • 1
    • 2
  • András Berkó
    • 1
  • János Kiss
    • 1
    • 4
  • Zoltán Kónya
    • 1
    • 3
  1. 1.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupUniversity of SzegedSzegedHungary
  2. 2.Extreme Light Infrastructure-ALPSELI-HU Non-profit Ltd.SzegedHungary
  3. 3.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  4. 4.Department of Physical Chemistry and Materials ScienceUniversity of SzegedSzegedHungary

Personalised recommendations