Topics in Catalysis

, Volume 61, Issue 12–13, pp 1227–1236 | Cite as

Sm on CeO2(111): A Case for Ceria Modification via Strong Metal–Ceria Interaction

  • Yan Wang
  • Shanwei Hu
  • Qian Xu
  • Huanxin Ju
  • Junfa ZhuEmail author
Original Paper


The growth, electronic structure and stability of Sm on ordered CeO2(111) thin films grown on Cu(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), low energy electron diffraction, and scanning tunneling microscopy (STM). Metallic samarium was deposited on the CeO2(111) surface by thermal evaporation under ultrahigh vacuum conditions at room temperature. The XPS data suggest that metallic Sm is oxidized to Sm3+ upon the deposition of Sm on CeO2, accompanied by the reduction of Ce4+ to Ce3+. With increasing the Sm coverage, the concentration of Ce3+ increases monotonically. After depositing 6 ML of Sm, only Ce3+ is observed within the detection depth of XPS. The STM results indicate that Sm exhibits a two-dimensional growth on the CeO2(111) surface at low coverages. Annealing to higher temperatures leads to the agglomeration of Sm particles and concurrent diffusion of Sm into the ceria film. These results illustrate that Sm can modify both the electronic and structural properties of ceria.


Ceria Samarium Model catalyst XPS STM 



The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. U1732272, 21473178 and 21403205), National Key R&D Program of China (No. 2017YFA0403402), China Postdoctoral Science Foundation (BH2310000032), and Chinese Universities Scientific Fund (WK2310000068) for the financial support of this work.


  1. 1.
    Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196(2):293–301CrossRefGoogle Scholar
  2. 2.
    Bao J, Liu Z, Zhang Y, Tsubaki N (2008) Catal Commun 9(5):913–918CrossRefGoogle Scholar
  3. 3.
    Sasirekha N, Sangeetha P, Chen Y-W (2014) J Phys Chem C 118(28):15226–15233CrossRefGoogle Scholar
  4. 4.
    Perez Ferrandez DM, Herguedas Fernandez I, Teley MPG, de Croon MHJM., Schouten JC, Nijhuis TA (2015) J Catal 330:396–405CrossRefGoogle Scholar
  5. 5.
    Campbell CT (2012) Nat Chem 4(8):597–598CrossRefPubMedGoogle Scholar
  6. 6.
    Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) Angew Chem Int Ed 44(30):4778–4781CrossRefGoogle Scholar
  7. 7.
    Gao Y, Wang W, Chang S, Huang W (2013) ChemCatChem 5(12):3610–3620CrossRefGoogle Scholar
  8. 8.
    Bäumer M, Freund H-J (1999) Prog Surf Sci 61(7):127–198CrossRefGoogle Scholar
  9. 9.
    Campbell CT (1997) Surf Sci Rep 27(1):1–111CrossRefGoogle Scholar
  10. 10.
    Li M, Wu Z, Overbury SH (2013) J Catal 306:164–176CrossRefGoogle Scholar
  11. 11.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318(5857):1757CrossRefGoogle Scholar
  12. 12.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301(5635):935CrossRefPubMedGoogle Scholar
  13. 13.
    Dvořák F, Stetsovych O, Steger M, Cherradi E, Matolínová I, Tsud N, Škoda M, Skála T, Mysliveček J, Matolín V (2011) J Phys Chem C 115(15):7496–7503CrossRefGoogle Scholar
  14. 14.
    Staudt T, Lykhach Y, Hammer L, Schneider MA, Matolín V, Libuda J (2009) Surf Sci 603(23):3382–3388CrossRefGoogle Scholar
  15. 15.
    Šutara F, Cabala M, Sedláček L, Skála T, Škoda M, Matolín V, Prince KC, Cháb V (2008) Thin Solid Films 516(18):6120–6124CrossRefGoogle Scholar
  16. 16.
    Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2006) Surf Sci 600(22):5004–5010CrossRefGoogle Scholar
  17. 17.
    Grinter DC, Ithnin R, Pang CL, Thornton G (2010) J Phys Chem C 114(40):17036–17041CrossRefGoogle Scholar
  18. 18.
    Matolín V, Johánek V, Škoda M, Tsud N, Prince KC, Skála T, Matolínová I (2010) Langmuir 26(16):13333–13341CrossRefPubMedGoogle Scholar
  19. 19.
    Happel M, Mysliveček J, Johánek V, Dvořák F, Stetsovych O, Lykhach Y, Matolín V, Libuda J (2012) J Catal 289:118–126CrossRefGoogle Scholar
  20. 20.
    Wilson EL, Grau-Crespo R, Pang CL, Cabailh G, Chen Q, Purton JA, Catlow CRA, Brown WA, de Leeuw NH, Thornton G (2008) J Phys Chem C 112(29):10918–10922CrossRefGoogle Scholar
  21. 21.
    Wilson EL, Chen Q, Brown WA, Thornton G (2007) J Phys Chem C 111(38):14215–14222CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Zhou J (2012) J Phys Chem C 116(17):9544–9549CrossRefGoogle Scholar
  23. 23.
    Carrasco J, López-Durán D, Liu Z, Duchoň T, Evans J, Senanayake SD, Crumlin EJ, Matolín V, Rodríguez JA, Ganduglia-Pirovano MV (2015) Angew Chem Int Ed 54(13):3917–3921CrossRefGoogle Scholar
  24. 24.
    Hu S, Wang Y, Wang W, Han Y, Fan Q, Feng X, Xu Q, Zhu J (2015) J Phys Chem C 119(7):3579–3588CrossRefGoogle Scholar
  25. 25.
    Kong D, Wang G, Pan Y, Hu S, Hou J, Pan H, Campbell CT, Zhu J (2011) J Phys Chem C 115(14):6715–6725CrossRefGoogle Scholar
  26. 26.
    Hu S, Wang W, Wang Y, Xu Q, Zhu J (2015) J Phys Chem C 119(32):18257–18266CrossRefGoogle Scholar
  27. 27.
    Wang W, Hu S, Han Y, Pan X, Xu Q, Zhu J (2016) Surf Sci 653:205–210CrossRefGoogle Scholar
  28. 28.
    Skála T, Tsud N, Prince KC, Matolín V (2011) Appl Surf Sci 257(8):3682–3687CrossRefGoogle Scholar
  29. 29.
    Škoda M, Cabala M, Cháb V, Prince KC, Sedláček L, Skála T, Šutara F, Matolín V (2008) Appl Surf Sci 254(14):4375–4379CrossRefGoogle Scholar
  30. 30.
    Skála T, Šutara F, Prince KC, Matolín V (2009) J Electron Spectrosc Relat Phenom 169(1):20–25CrossRefGoogle Scholar
  31. 31.
    Skála T, Šutara F, Cabala M, Škoda M, Prince KC, Matolín V (2008) Appl Surf Sci 254(21):6860–6864CrossRefGoogle Scholar
  32. 32.
    Ginting E, Hu S, Thorne JE, Zhou Y, Zhu J, Zhou J (2013) Appl Surf Sci 283:1–5CrossRefGoogle Scholar
  33. 33.
    Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Appl Catal B 75(3–4):189–200CrossRefGoogle Scholar
  34. 34.
    Mandal S, Bando KK, Santra C, Maity S, James OO, Mehta D, Chowdhury B (2013) Appl Catal A 452:94–104CrossRefGoogle Scholar
  35. 35.
    Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, Panda AB (2011) J Phys Chem C 115(15):7628–7637CrossRefGoogle Scholar
  36. 36.
    Alaydrus M, Sakaue M, Aspera SM, Wungu TDK, Linh NH, Linh TPT, Kasai H, Ishihara T, Mohri T (2014) J Phys Soc Jpn 83(9):094707CrossRefGoogle Scholar
  37. 37.
    Alaydrus M, Sakaue M, Aspera SM, Wungu TDK, Linh TPT, Kasai H, Ishihara T (2013) ECS Trans 57(1):2733–2739CrossRefGoogle Scholar
  38. 38.
    Chen S-Y, Chen R-J, Lee W, Dong C-L, Gloter A (2014) Phys Chem Chem Phys 16(7):3274–3281CrossRefPubMedGoogle Scholar
  39. 39.
    Xie T, Wang X-D, Yao M, Liu X-S, Chen Y-G (2016) RSC Adv 6(24):20349–20356CrossRefGoogle Scholar
  40. 40.
    Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) RSC Adv 3(21):7953–7962CrossRefGoogle Scholar
  41. 41.
    Xu Q, Hu S, Cheng D, Feng X, Han Y, Zhu J (2012) J Chem Phys 136(15):154705CrossRefPubMedGoogle Scholar
  42. 42.
    Torbrügge S, Cranney M, Reichling M (2008) Appl Phys Lett 93(7):073112CrossRefGoogle Scholar
  43. 43.
    Farmer JA, Baricuatro JH, Campbell CT (2010) J Phys Chem C 114(40):17166–17172CrossRefGoogle Scholar
  44. 44.
    Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) Rev Sci Instrum 78(1):013705CrossRefPubMedGoogle Scholar
  45. 45.
    Dufour G, Karnatak RC, Mariot JM, Bonnelle C (1976) Chem Phys Lett 42(3):433–436CrossRefGoogle Scholar
  46. 46.
    Yang A-B (1989) Retrospective theses and dissertations. 9254. Accessed 1989
  47. 47.
    Kuchowicz M, Kołaczkiewicz J (2008) Surf Sci 602(24):3721–3727CrossRefGoogle Scholar
  48. 48.
    Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409(2):307–319CrossRefGoogle Scholar
  49. 49.
    Pfau A, Schierbaum KD (1994) Surf Sci 321(1):71–80CrossRefGoogle Scholar
  50. 50.
    Skála T, Šutara F, Škoda M, Prince KC, Matolín V (2009) J Phys: Condens Matter 21(5):055005Google Scholar
  51. 51.
    Barin I (1995) Ca-CeTe. In: Thermochemical data of pure substances. Wiley, New York, pp 416–523. CrossRefGoogle Scholar
  52. 52.
    Zhou Y, Zhou J (2012) Surf Sci 606(7–8):749–753CrossRefGoogle Scholar
  53. 53.
    Zhao Y, Teng B, Yang Z, Zhao Y, Zhao L, Luo M (2011) J Phys Chem C 115(33):16461–16466CrossRefGoogle Scholar
  54. 54.
    Fukui K-i, Namai Y, Iwasawa Y (2002) Appl Surf Sci 188(3):252–256CrossRefGoogle Scholar
  55. 55.
    Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund HJ (2009) J Phys Chem C 113(15):6042–6049CrossRefGoogle Scholar
  56. 56.
    Jhang J-H, Schaefer A, Cartas W, Epuri S, Bäumer M, Weaver JF (2013) J Phys Chem C 117(41):21396–21406CrossRefGoogle Scholar
  57. 57.
    Stetsovych V, Pagliuca F, Dvořák F, Duchoň T, Vorokhta M, Aulická M, Lachnitt J, Schernich S, Matolínová I, Veltruská K, Skála T, Mazur D, Mysliveček J, Libuda J, Matolín V (2013) J Phys Chem Lett 4(6):866–871CrossRefPubMedGoogle Scholar
  58. 58.
    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T (2001) Solid State Ionics 140(3–4):191–199CrossRefGoogle Scholar
  59. 59.
    Zhao S, Gorte RJ (2004) Appl Catal A 277(1):129–136CrossRefGoogle Scholar
  60. 60.
    Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skala T, Bruix A, Illas F, Prince KC (2011) Nat Mater 10(4):310CrossRefPubMedGoogle Scholar
  61. 61.
    Skála T, Tsud N, Prince KC, Matolín V (2011) J Phys: Condens Matter 23(21):215001Google Scholar
  62. 62.
    Suresh B, Ranjith T, Talgat I, Richard D, Artëm EM, Alfons S, Sudipta S (2009) Nanotechnology 20(8):085713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yan Wang
    • 1
  • Shanwei Hu
    • 1
  • Qian Xu
    • 1
  • Huanxin Ju
    • 1
  • Junfa Zhu
    • 1
    Email author
  1. 1.National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and TechnologyUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations