Advertisement

Topics in Catalysis

, Volume 61, Issue 12–13, pp 1210–1217 | Cite as

Surface Science Approach to the Molecular Level Integration of the Principles in Heterogeneous, Homogeneous, and Enzymatic Catalysis

  • Tyler J. Hurlburt
  • Wen-Chi Liu
  • Rong Ye
  • Gabor A. Somorjai
Original Paper
  • 126 Downloads

Abstract

Heterogeneous, homogeneous, and enzymatic catalysis have generally been treated and studied as three separate fields. However all three fields have many aspects that unify them, therefore it is useful to study catalysts from each field in similar manners. Heterogeneous catalysts have been studied extensively under reaction conditions to monitor dynamic changes that occur during catalytic reactions, their atomic and molecular structure, and composition and oxidation state with high spatial and time resolution. The techniques used to monitor these catalysts include sum frequency generation vibrational spectroscopy, high pressure scanning tunneling microscopy, and ambient pressure X-ray photoelectron spectroscopy. In order to use these techniques to study homogeneous catalysts and enzymes under reaction conditions, we have heterogenized homogeneous catalysts by encapsulating small metal clusters in dendrimers and immobilized enzymes through the use of DNA tethers. By studying all three fields under reaction conditions with the same techniques we aim to show that heterogeneous, homogeneous, and enzymatic catalysts all behave similarly at the molecular level.

Keywords

Catalysis Heterogeneous Homogeneous Enzyme Nanoparticles Surface chemistry 

Notes

Acknowledgements

The work shown in this article was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy under Contract DE-AC02-05CH11231.

References

  1. 1.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311(5759):362–365CrossRefGoogle Scholar
  2. 2.
    Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ (1996) Science 274(5295):2044–2046CrossRefGoogle Scholar
  3. 3.
    Shearer GL, Kim K, Lee KM, Wang CK, Plapp BV (1993) Biochemistry 32(41):11186–11194CrossRefGoogle Scholar
  4. 4.
    Ohara D, Kawano K, Inokuma M, Fujita Y M (2010) J Am Chem Soc 132(1):30–31CrossRefGoogle Scholar
  5. 5.
    Gauthier E, Lindhardt D, Olsen AT, Overgaard EPK, Skrydstrup J T (2010) J Am Chem Soc 132(23):7998–8009CrossRefGoogle Scholar
  6. 6.
    Kofron JL, Kuzmic P, Kishore V, Colon-Bonilla E, Rich DH (1991) Biochemistry 30(25):6127–6134CrossRefGoogle Scholar
  7. 7.
    Sejidov FT, Mansoori Y, Goodarzi N (2005) J Mol Catal A: Chem 240(1–2):186–190Google Scholar
  8. 8.
    Ishihara K, Nakagawa S, Sakaura A (2005) J Am Chem Soc 127(12):4168–4169CrossRefGoogle Scholar
  9. 9.
    Björkling F, Godtfredsen SE, Kirk O (1989) J Chem Soc Chem Commun 14:934–935CrossRefGoogle Scholar
  10. 10.
    Li Y, Liu JHC, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) J Am Chem Soc 133(34):13527–13533CrossRefGoogle Scholar
  11. 11.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47(46):8893–8896CrossRefGoogle Scholar
  12. 12.
    Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung LI, Somorjai GA, Yang P (2009) J Am Chem Soc 131(16):5816–5822CrossRefGoogle Scholar
  13. 13.
    Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) J Phys Chem B 109(1):188–193CrossRefGoogle Scholar
  14. 14.
    Pushkarev VV, An K, Alayoglu S, Beaumont SK, Somorjai GA (2012) J Catal 292:64–72CrossRefGoogle Scholar
  15. 15.
    Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu Z, Liu Z, Salmeron M, Somorjai GA (2010) J Am Chem Soc 132(25):8697–8703CrossRefGoogle Scholar
  16. 16.
    Schott V, Oberhofer H, Birkner A, Xu M, Wang Y, Muhler M, Reuter K, Wöll C (2013) Angew Chem Int Ed 52(45):11925–11929CrossRefGoogle Scholar
  17. 17.
    Gross E, Shu X-Z, Alayoglu S, Bechtel HA, Martin MC, Toste FD, Somorjai GA (2014) J Am Chem Soc 136(9):3624–3629CrossRefGoogle Scholar
  18. 18.
    Tsakoumis NF, Walmsley JC, Rønning M, van Beek W, Rytter E, Holmen A (2017) J Am Chem Soc 139(10):3706–3715CrossRefGoogle Scholar
  19. 19.
    Shen Y (1989) Nature 337:519–525CrossRefGoogle Scholar
  20. 20.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131(46):16589–16605CrossRefGoogle Scholar
  21. 21.
    McCrea KR, Somorjai GA (2000) J Mol Catal Chem 163(1–2):43–53CrossRefGoogle Scholar
  22. 22.
    Holinga GJ, York RL, Onorato RM, Thompson CM, Webb NE, Yoon AP, Somorjai GA (2011) J Am Chem Soc 133(16):6243–6253CrossRefGoogle Scholar
  23. 23.
    Tao F, Dag S, Wang L-W, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327(5967):850–853CrossRefGoogle Scholar
  24. 24.
    Zhu Z, Melaet G, Axnanda S, Alayoglu S, Liu Z, Salmeron M, Somorjai GA (2013) J Am Chem Soc 135(34):12560–12563CrossRefGoogle Scholar
  25. 25.
    Montano M, Salmeron M, Somorjai GA (2006) Surf Sci 600(9):1809–1816CrossRefGoogle Scholar
  26. 26.
    Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322(5903):932–934CrossRefGoogle Scholar
  27. 27.
    Huang Y, Rettner CT, Auerbach DJ, Wodtke AM (2000) Science 290(5489):111–114CrossRefGoogle Scholar
  28. 28.
    Park JY, Somorjai GA (2006) J Vac Sci Technol B 24(4):1967–1971CrossRefGoogle Scholar
  29. 29.
    Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9(11):3930–3933CrossRefGoogle Scholar
  30. 30.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dulak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141(8):1067–1071CrossRefGoogle Scholar
  31. 31.
    Somorjai GA, Park JY (2008) Angew Chem Int Ed 47(48):9212–9228CrossRefGoogle Scholar
  32. 32.
    Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027–2034CrossRefGoogle Scholar
  33. 33.
    Ye R, Yuan B, Zhao J, Ralston WT, Wu C-Y, Unel Barin E, Toste FD, Somorjai GA (2016) J Am Chem Soc 138(27):8533–8537CrossRefGoogle Scholar
  34. 34.
    Ye R, Zhao J, Yuan B, Liu W-C, De Araujo R, Faucher FF, Chang M, Deraedt CV, Toste FD, Somorjai GA (2017) Nano Lett 17(1):584–589CrossRefGoogle Scholar
  35. 35.
    Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Nat Chem 2:36–41CrossRefGoogle Scholar
  36. 36.
    Huang W, Liu JH-C, Alayoglu P, Li Y, Witham CA, Tsung C-K, Toste FD, Somorjai GA (2010) J Am Chem Soc 132:16771–16773CrossRefGoogle Scholar
  37. 37.
    Gross E, Liu JH-C, Toste FD, Somorjai GA (2012) Nat Chem 4:947–952CrossRefGoogle Scholar
  38. 38.
    Deraedt C, Melaet G, Ralston WT, Ye R, Somorjai GA (2017) Nano Lett 17(3):1853–1862CrossRefGoogle Scholar
  39. 39.
    Niemeyer CM (2010) Angew Chem Int Ed 49(7):1200–1216CrossRefGoogle Scholar
  40. 40.
    Beaucage SL (2001) Curr Med Chem 8(10):1213 – 1244CrossRefGoogle Scholar
  41. 41.
    Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T (2014) Sensors 14(12):22208–22229CrossRefGoogle Scholar
  42. 42.
    Palla KS, Hurlburt TJ, Buyanin AM, Somorjai GA, Francis MB (2017) J Am Chem Soc 139(5):1967–1974CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tyler J. Hurlburt
    • 1
    • 2
    • 3
  • Wen-Chi Liu
    • 1
    • 2
    • 3
  • Rong Ye
    • 1
    • 2
    • 3
  • Gabor A. Somorjai
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Kavli Energy NanoScience InstituteUniversity of CaliforniaBerkeleyUSA
  3. 3.Chemical Sciences DivisionLawrence Berkeley National LaboratoriesBerkeleyUSA

Personalised recommendations