Topics in Catalysis

, Volume 61, Issue 15–17, pp 1591–1606 | Cite as

Enhanced UV Flexible Photodetectors and Photocatalysts Based on TiO2 Nanoplatforms

  • D. NunesEmail author
  • A. Pimentel
  • A. Araujo
  • T. R. Calmeiro
  • S. Panigrahi
  • J. V. Pinto
  • P. Barquinha
  • M. Gama
  • E. FortunatoEmail author
  • R. MartinsEmail author
Original Paper


In this study, titanium dioxide (TiO2) nanostructured films were synthesized under microwave irradiation through low temperature synthesis (80 °C) and integrated in ultraviolet (UV) photodetectors and as photocatalysts. Bacterial nanocellulose (BNC), tracing paper, and polyester film were tested as substrates, since they are inexpensive, flexible, recyclable, lightweight, and when associated to low temperature synthesis and absence of a seed layer, they become suitable for several low-cost applications. The nanostructured TiO2 films and substrates were structurally characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray diffraction, and Raman spectroscopy. The optical properties of all materials were investigated. The TiO2 nanostructured films were implemented as a photoactive layer of UV photodetectors and demonstrated significant increase of conductance upon exposed to UV irradiation. The photodetection behaviour of each material was investigated by in-situ Kelvin probe force microscopy experiments, in which the contact potential difference varied under dark or UV irradiation conditions, demonstrating higher shift for the BNC-based UV photodetector. Photocatalytic activity of the films was assessed from rhodamine B degradation under solar radiation, and BNC based devices revealed to be the best photocatalyst. The structural characteristics of the TiO2 films and substrates were correlated to the differences in the UV photodetection and photocatalytic performances.

Graphical Abstract


TiO2 nanostructured films Flexible substrates Microwave irradiation UV photodetectors Low-cost devices 



The work was supported by the FCT—Portuguese Foundation for Science and Technology, through the scholarship BPD/84215/2012. This work is also funded by FEDER funds through the COMPETE 2020 Program and National Funds through FCT - Portuguese Foundation for Science and Technology under the project number POCI-01-0145-FEDER-007688, Reference UID/CTM/50025/2013. The Center of Biological Engineering acknowledges funding through UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

11244_2018_968_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1842 KB)


  1. 1.
    Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204(9–10):1562–1568. CrossRefGoogle Scholar
  2. 2.
    Lin J, Heo Y-U, Nattestad A, Sun Z, Wang L, Kim JH, Dou SX (2014) 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep 4:5769CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dadkhah M, Salavati-Niasari M, Mir N (2014) Synthesis and characterization of TiO2 nanoparticles by using new shape controllers and its application in dye sensitized solar cells. J Ind Eng Chem 20(6):4039–4044. CrossRefGoogle Scholar
  4. 4.
    Sabet M, Salavati-Niasari M (2014) Deposition of cadmium selenide semiconductor nanostructures on TiO2 surface via different chemical methods and investigation of their effects on dye sensitized solar cell efficiency. Mater Sci Semicond Process 27:619–633. CrossRefGoogle Scholar
  5. 5.
    Nunes D, Pimentel A, Pinto J, Calmeiro T, Nandy S, Barquinha P, Pereira L, Carvalho P, Fortunato E, Martins R (2016) Photocatalytic behavior of TiO2 films synthesized by microwave irradiation. Catal Today 278:262–270CrossRefGoogle Scholar
  6. 6.
    Nunes D, Pimentel A, Santos L, Barquinha P, Fortunato E, Martins R (2017) Photocatalytic TiO2 nanorod spheres and arrays compatible with flexible applications. Catalysts 7(2):60CrossRefGoogle Scholar
  7. 7.
    Bernacka-Wojcik I, Senadeera R, Wojcik PJ, Silva LB, Doria G, Baptista P, Aguas H, Fortunato E, Martins R (2010) Inkjet printed and “doctor blade” TiO2 photodetectors for DNA biosensors. Biosens Bioelectron 25(5):1229–1234. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114(19):10131–10176. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Z, Li F, Li S, Hu C, Wang W, Wang F, Lin F, Wang H (2015) Fabrication of UV photodetector on TiO2/diamond film. Sci Rep 5, 14420CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yu X, Zhao Z, Zhang J, Guo W, Qiu J, Li D, Li Z, Mou X, Li L, Li A (2016) Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-powered, wireless UV photodetector. Small 12(20):2759–2767CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen Z, Xiaohong W, Xuanlin K, Sixing X (2016) High performance flexible ultraviolet photodetectors based on TiO2/graphene hybrid for irradiation monitoring applications. J Micromech Microeng 26(7):075003CrossRefGoogle Scholar
  12. 12.
    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M, Cab C, De Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605CrossRefGoogle Scholar
  13. 13.
    Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3(1):36–73CrossRefGoogle Scholar
  14. 14.
    Cao Y, Li X, Bian Z, Fuhr A, Zhang D, Zhu J (2016) Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl Catal B 180:551–558. CrossRefGoogle Scholar
  15. 15.
    Liu B, Wang Z, Dong Y, Zhu Y, Gong Y, Ran S, Liu Z, Xu J, Xie Z, Chen D, Shen G (2012) ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. J Mater Chem 22(18):9379–9384. CrossRefGoogle Scholar
  16. 16.
    Torras-Rosell A, Johannsen SR, Dirscherl K, Daviðsdóttir S, Jeppesen CS, Louring S, Andersen IH (2017) Comparing the photocatalytic activity of TiO(2) at macro- and microscopic scales. Environ Sci Pollut Res Int 24(14):12683–12690. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu M-C, Liao H-C, Cho Y-C, Tóth G, Chen Y-F, Su W-F, Kordás K (2013) Photo-Kelvin probe force microscopy for photocatalytic performance characterization of single filament of TiO2 nanofiber photocatalysts. J Mater Chem A 1(18):5715–5720CrossRefGoogle Scholar
  18. 18.
    Wu M-C, Liao H-C, Cho Y-C, Hsu C-P, Lin T-H, Su W-F, Sápi A, Kukovecz Á, Kónya Z, Shchukarev A, Sarkar A, Larsson W, Mikkola J-P, Mohl M, Tóth G, Jantunen H, Valtanen A, Huuhtanen M, Keiski RL, Kordás K (2013) Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study. J Nanopart Res 16(1):1–11. CrossRefGoogle Scholar
  19. 19.
    Vicente AT, Araújo A, Gaspar D, Santos L, Marques AC, Mendes MJ, Pereira L, Fortunato E, Martins R (2017) Optoelectronics and bio devices on paper powered by solar cells. In: Nanostructured solar cells. InTech, RijekaGoogle Scholar
  20. 20.
    Vicente AT, Araujo A, Mendes MJ, Nunes D, Oliveira MJ, Sanchez-Sobrado O, Ferreira MP, Aguas H, Fortunato E, Martins R (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C. CrossRefGoogle Scholar
  21. 21.
    Gama M, Dourado F, Bielecki S (2016) Bacterial nanocellulose: from biotechnology to bio-economy. Elsevier, AmsterdamCrossRefGoogle Scholar
  22. 22.
    Barros AD, Albertin KF, Miyoshi J, Doi I, Diniz JA (2010) Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications. Microelectron Eng 87(3):443–446. CrossRefGoogle Scholar
  23. 23.
    Zheng J, Bao S, Guo Y, Jin P (2014) TiO2 films prepared by DC reactive magnetron sputtering at room temperature: phase control and photocatalytic properties. Surf Coat Technol 240:293–300. CrossRefGoogle Scholar
  24. 24.
    Dongale TD, Shinde SS, Kamat RK, Rajpure KY (2014) Nanostructured TiO2 thin film memristor using hydrothermal process. J Alloys Compd 593:267–270. CrossRefGoogle Scholar
  25. 25.
    Lee S-H, Kang M, Cho SM, Han GY, Kim B-W, Yoon KJ, Chung C-H (2001) Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance. J Photochem Photobiol A 146(1–2):121–128. CrossRefGoogle Scholar
  26. 26.
    Salavati-Niasari M, Javidi J, Dadkhah M (2013) Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Comb Chem High Throughput Screen 16(6):458–462CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pimentel A, Rodrigues J, Duarte P, Nunes D, Costa F, Monteiro T, Martins R, Fortunato E (2015) Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J Mater Sci 50(17):5777–5787CrossRefGoogle Scholar
  28. 28.
    Nunes D, Pimentel A, Barquinha P, Carvalho PA, Fortunato E, Martins R (2014) Cu2O polyhedral nanowires produced by microwave irradiation. J Mater Chem C 2(30):6097–6103. CrossRefGoogle Scholar
  29. 29.
    Bose A, Sreemany M, Bysakh S (2011) Role of TiO2 seed layer thickness on the nanostructure evolution and phase transformation behavior of sputtered PZT thin films during post-deposition air-annealing. J Am Ceram Soc 94(11):4066–4077CrossRefGoogle Scholar
  30. 30.
    Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers online, Wiley, New York. CrossRefGoogle Scholar
  31. 31.
    Brown JRM (1989) Bacterial cellulose. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose: structural and functional aspects. Ellis Horwood Ltd, ChichesterGoogle Scholar
  32. 32.
    Costa V, Costa A, Amaral M, Oliveira C, Gama M, Dourado F, Simões R (2016) Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films. J Mater Sci 51(21):9562–9572CrossRefGoogle Scholar
  33. 33.
    Pimentel A, Samouco A, Nunes D, Araújo A, Martins R, Fortunato E (2017) Ultra-fast microwave synthesis of ZnO nanorods on cellulose substrates for UV sensor applications. Materials 10(11):1308CrossRefGoogle Scholar
  34. 34.
    Kraus W, Nolze G (1996) POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29(3):301–303. doiCrossRefGoogle Scholar
  35. 35.
    Pearson WB, Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases, vol 2. American Society for Metals, Materials ParkGoogle Scholar
  36. 36.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nunes D, Calmeiro TR, Nandy S, Pinto JV, Pimentel A, Barquinha P, Carvalho PA, Walmsley JC, Fortunato E, Martins R (2016) Charging effects and surface potential variations of Cu-based nanowires. Thin Solid Films 601:45–53. CrossRefGoogle Scholar
  38. 38.
    Panigrahi S, Calmeiro T, Martins R, Nunes D, Fortunato E (2016) Observation of space charge dynamics inside an all oxide based solar cell. ACS Nano 10(6):6139–6146. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Santos L, Nunes D, Calmeiro T, Branquinho R, Salgueiro D, Barquinha P, Pereira L, Martins R, Fortunato E (2015) Solvothermal synthesis of gallium–indium-zinc-oxide nanoparticles for electrolyte-gated transistors. ACS Appl Mater Interfaces 7(1):638–646. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Du Y, Zhang MS, Wu J, Kang L, Yang S, Wu P, Yin Z (2003) Optical properties of SrTiO3 thin films by pulsed laser deposition. Appl Phys A 76(7):1105–1108. CrossRefGoogle Scholar
  41. 41.
    Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46. CrossRefGoogle Scholar
  42. 42.
    Pimentel A, Ferreira SH, Nunes D, Calmeiro T, Martins R, Fortunato E (2016) Microwave synthesized ZnO nanorod arrays for UV sensors: a seed layer annealing temperature study. Materials 9(4):299CrossRefGoogle Scholar
  43. 43.
    Wu M-C, Liao H-C, Cho Y-C, Hsu C-P, Lin T-H, Su W-F, Sápi A, Kukovecz Á, Kónya Z, Shchukarev A (2014) Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study. J Nanoparticle Res 16(1):1–11CrossRefGoogle Scholar
  44. 44.
    Zhou W, Liu X, Cui J, Liu D, Li J, Jiang H, Wang J, Liu H (2011) Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. CrystEngComm 13(14):4557–4563. CrossRefGoogle Scholar
  45. 45.
    Wang M, Li Q, Yu H, Hur SH, Kim EJ (2013) Phase-controlled preparation of TiO2 films and micro(nano)spheres by low-temperature chemical bath deposition. J Alloys Compd 578:419–424. CrossRefGoogle Scholar
  46. 46.
    Andreia A, Ana P, Maria João O, Manuel JM, Ricardo F, Elvira F, Hugo Á, Rodrigo M (2017) Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flex Print Electron 2(1):014001CrossRefGoogle Scholar
  47. 47.
    Manekkathodi A, Lu M-Y, Wang CW, Chen L-J (2010) Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater 22(36):4059–4063. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pimentel A, Araújo A, Coelho B, Nunes D, Oliveira M, Mendes M, Águas H, Martins R, Fortunato E (2017) 3D ZnO/Ag surface-enhanced raman scattering on disposable and flexible cardboard platforms. Materials 10(12):1351CrossRefGoogle Scholar
  49. 49.
    Wang Y, Li L, Huang X, Li Q, Li G (2015) New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv 5(43):34302–34313. CrossRefGoogle Scholar
  50. 50.
    Aydın C, Benhaliliba M, Al-Ghamdi A, Gafer Z, El-Tantawy F, Yakuphanoglu F (2013) Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method. J Electroceram 31(1–2):265–270. CrossRefGoogle Scholar
  51. 51.
    Yu J-G, Yu H-G, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107(50):13871–13879. CrossRefGoogle Scholar
  52. 52.
    Wu J-M, Shih HC, Wu W-T (2006) Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17(1):105CrossRefGoogle Scholar
  53. 53.
    Ramana C, Smith R, Hussain O (2003) Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Phys Status Solidi (a) 199(1):R4–R6CrossRefGoogle Scholar
  54. 54.
    Migas DB, Filonov AB, Borisenko VE, Skorodumova NV (2014) Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires. Phys Chem Chem Phys 16(20):9479–9489. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Enríquez JP, Mathew X (2003) Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells 76(3):313–322. CrossRefGoogle Scholar
  56. 56.
    Pereira L, Barquinha P, Fortunato E, Martins R, Kang D, Kim CJ, Lim H, Song I, Park Y (2008) High k dielectrics for low temperature electronics. Thin Solid Films 516(7):1544–1548. CrossRefGoogle Scholar
  57. 57.
    Chen H, Liu K, Hu L, Al-Ghamdi AA, Fang X (2015) New concept ultraviolet photodetectors. Mater Today 18(9):493–502. CrossRefGoogle Scholar
  58. 58.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19(02):628–634CrossRefGoogle Scholar
  59. 59.
    Fryxell GE, Cao G (2012) Environmental applications of nanomaterials: synthesis, sorbents and sensors. Imperial College Press, LondonCrossRefGoogle Scholar
  60. 60.
    Wang Z, Gu Y, Qi J, Lu S, Li P, Lin P, Zhang Y (2015) Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Adv 5(52):42075–42080. CrossRefGoogle Scholar
  61. 61.
    Soci C, Zhang A, Xiang B, Dayeh SA, Aplin D, Park J, Bao X, Lo Y-H, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7(4):1003–1009CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kalantar-zadeh K, Fry B (2008) Sensor characteristics and physical effects. In: Kalantar-zadeh K, Fry B (eds) Nanotechnology-enabled sensors. Springer, Boston, pp 13–62. CrossRefGoogle Scholar
  63. 63.
    Fu Y, Cao W (2006) Preparation of transparent TiO2 nanocrystalline film for UV sensor. Chin Sci Bull 51(14):1657–1661. CrossRefGoogle Scholar
  64. 64.
    Li Y-R, Wan C-Y, Chang C-T, Tsai W-L, Huang Y-C, Wang K-Y, Yang P-Y, Cheng H-C (2015) Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure. Vacuum 118:48–54. CrossRefGoogle Scholar
  65. 65.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227. CrossRefGoogle Scholar
  66. 66.
    Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66(1):1–27. CrossRefGoogle Scholar
  67. 67.
    Liscio A, Palermo V, Samorì P (2010) Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials. Acc Chem Res 43(4):541–550CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu Z, Qi J, Li F, Zhu X, Wang Z, Zhang G, Zhang Y (2016) The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire. Nano Res. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li Y, Liu Y, Wang J, Uchaker E, Zhang Q, Sun S, Huang Y, Li J, Cao G (2013) Titanium alkoxide induced BiOBr-Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity. J Mater Chem A 1(27):7949–7956. CrossRefGoogle Scholar
  70. 70.
    Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S (2017) Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason Sonochem 39:494–503. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Monsef R, Ghiyasiyan-Arani M, Salavati-Niasari M (2018) Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason Sonochem 42:201–211. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ghiyasiyan-Arani M, Salavati-Niasari M, Masjedi-Arani M, Mazloom F (2018) An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. J Mater Sci: Mater Electron 29(1):474–485. CrossRefGoogle Scholar
  73. 73.
    Mazloom F, Masjedi-Arani M, Ghiyasiyan-Arani M, Salavati-Niasari M (2016) Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J Mol Liq 214:46–53. CrossRefGoogle Scholar
  74. 74.
    Ghiyasiyan-Arani M, Masjedi-Arani M, Ghanbari D, Bagheri S, Salavati-Niasari M (2016) Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites. Sci Rep 6:25231. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ghiyasiyan-Arani M, Masjedi-Arani M, salavati-Niasari M (2016) Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J Mol Catal A 425:31–42. CrossRefGoogle Scholar
  76. 76.
    Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J Mol Liq 216:59–66. CrossRefGoogle Scholar
  77. 77.
    Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2015) Simple precipitation synthesis of pure Cu3V2O8 nanoparticles and investigation of their optical properties. J Nanostruct 5(4):437–441. CrossRefGoogle Scholar
  78. 78.
    Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J Mater Sci: Mater Electron 27(5):4871–4878. CrossRefGoogle Scholar
  79. 79.
    Szilágyi IM, Fórizs B, Rosseler O, Szegedi Á, Németh P, Király P, Tárkányi G, Vajna B, Varga-Josepovits K, László K, Tóth AL, Baranyai P, Leskelä M (2012) WO3 photocatalysts: influence of structure and composition. J Catal 294:119–127. CrossRefGoogle Scholar
  80. 80.
    Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B 155:34–38. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Pimentel A, Rodrigues J, Duarte P, Nunes D, Costa FM, Monteiro T, Martins R, Fortunato E (2015) Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J Mater Sci 50(17):5777–5787. CrossRefGoogle Scholar
  82. 82.
    Liu P, Zhang J, Gao D, Ye W (2017) Efficient visible light-induced degradation of rhodamine B by W(NxS1–x)2 nanoflowers. Sci Rep 7:40784. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M, Cab C, de C Rd, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605CrossRefGoogle Scholar
  84. 84.
    Karunakaran C, Senthilvelan S (2006) Fe2O3-photocatalysis with sunlight and UV light: oxidation of aniline. Electrochem Commun 8(1):95–101. CrossRefGoogle Scholar
  85. 85.
    Kazuhito H, Hiroshi I, Akira F (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269Google Scholar
  86. 86.
    Mecha AC, Onyango MS, Ochieng A, Jamil TS, Fourie CJS, Momba MNB (2016) UV and solar light photocatalytic removal of organic contaminants in municipal wastewater. Sep Sci Technol 51(10):1765–1778. CrossRefGoogle Scholar
  87. 87.
    Leong KH, Monash P, Ibrahim S, Saravanan P (2014) Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Sol Energy 101(Supplement C):321–332. CrossRefGoogle Scholar
  88. 88.
    Justicia I, Ordejón P, Canto G, Mozos JL, Fraxedas J, Battiston GA, Gerbasi R, Figueras A (2002) Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv Mater 14(19):1399–1402CrossRefGoogle Scholar
  89. 89.
    Borges ME, Sierra M, Cuevas E, García RD, Esparza P (2016) Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol Energy 135 (Supplement C):527–535. CrossRefGoogle Scholar
  90. 90.
    Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42(Part 1):2–14. CrossRefGoogle Scholar
  91. 91.
    Miranda-García N, Suárez S, Sánchez B, Coronado J, Malato S, Maldonado MI (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B 103(3):294–301CrossRefGoogle Scholar
  92. 92.
    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J Photochem Photobiol C 25 (Supplement C):1–29. CrossRefGoogle Scholar
  93. 93.
    Matsubara H, Takada M, Koyama S, Hashimoto K, Fujishima A (1995) Photoactive TiO2 containing paper: preparation and its photocatalytic activity under weak UV light illumination. Chem Lett 24(9):767–768CrossRefGoogle Scholar
  94. 94.
    Zhang J, Liu W, Wang P, Qian K (2013) Photocatalytic behavior of cellulose-based paper with TiO2 loaded on carbon fibers. J Environ Chem Eng 1(3):175–182. CrossRefGoogle Scholar
  95. 95.
    Wang P, Cheng M, Zhang Z (2014) On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation. J Saudi Chem Soc 18(4):308–316. CrossRefGoogle Scholar
  96. 96.
    Cui Y, Goldup SM, Dunn S (2015) Photodegradation of rhodamine B over Ag modified ferroelectric BaTiO3 under simulated solar light: pathways and mechanism. RSC Adv 5(38):30372–30379. CrossRefGoogle Scholar
  97. 97.
    Li J-y, Ma W-h, Lei P-x, Zhao J-c (2007) Detection of intermediates in the TiO2-assisted photodegradation of rhodamine B under visible light irradiation. J Environ Sci 19(7):892–896. CrossRefGoogle Scholar
  98. 98.
    Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of rhodamine B dye. J Nanopart Res 15(5):1669. CrossRefGoogle Scholar
  99. 99.
    Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113(37):10024–10032. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102(30):5845–5851. CrossRefGoogle Scholar
  101. 101.
    Guo Y, Li H, Chen J, Wu X, Zhou L (2014) TiO2 mesocrystals built of nanocrystals with exposed {001} facets: facile synthesis and superior photocatalytic ability. J Mater Chem A 2(46):19589–19593. CrossRefGoogle Scholar
  102. 102.
    Wang H, Gao X, Duan G, Yang X, Liu X (2015) Facile preparation of anatase–brookite–rutile mixed-phase N-doped TiO2 with high visible-light photocatalytic activity. J Environ Chem Eng 3(2):603–608. CrossRefGoogle Scholar
  103. 103.
    Qiu S, Ben T (2015) Porous polymers: design, synthesis and applications. Royal Society of Chemistry, CambridgeGoogle Scholar
  104. 104.
    Zhang X, Lu X, Shen Y, Han J, Yuan L, Gong L, Xu Z, Bai X, Wei M, Tong Y, Gao Y, Chen J, Zhou J, Wang ZL (2011) Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem Commun 47(20):5804–5806. CrossRefGoogle Scholar
  105. 105.
    Wang R, Cai X, Shen F (2013) Preparation of TiO2 hollow microspheres by a novel vesicle template method and their enhanced photocatalytic properties. Ceram Int 39(8):9465–9470. CrossRefGoogle Scholar
  106. 106.
    Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B 48(2):83–93. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and TechnologyUniversidade NOVA de Lisboa and CEMOP/UNINOVACaparicaPortugal
  2. 2.Centre of Biological Engineering – CEBUniversity of MinhoBragaPortugal

Personalised recommendations