Bimetallic Cobalt Nanoparticles (Co–M): Synthesis, Characterization, and Application in the Fischer–Tropsch Process

  • Walter T. Ralston
  • Wen-Chi Liu
  • Selim Alayoglu
  • Gérôme Melaet
Original Paper

Abstract

General synthesis schemes for size and composition controlled, bimetallic Co–M (M = Mn, Cu, Ru, Rh, Re) nanoparticles is reported. Characterization was carried out on the single particle level using scanning/transmission electron microscopy to confirm the bimetallic nature of the nanoparticles. In-situ synchrotron spectroscopy followed the near surface composition of the nanoparticles during oxidation and reduction treatments, as well as reactant gas conditions. The effect of the second transition metal on the Co reduction and Co surface concentration was studied, with Re being the most effective promoter to reduce the Co. The Co–M nanoparticles were tested for their CO hydrogenation (Fischer–Tropsch process) ability at industrial conditions of 20 bar and 250 °C, to understand the effect of a promoter in intimate contact with Co.

Keywords

Bimetallic nanoparticles Cobalt Promoters In-situ X-ray spectroscopy Fischer–Tropsch Heterogeneous catalysis 

Notes

Acknowledgements

W.T. Ralston and W.-C. Liu would like to acknowledge and thank Professor G. A. Somorjai for his mentorship and research support. G. Melaet is thankful for the mentorship and post-doctoral position in the Somorjai group. This work made use of DOE Office of Science User Facilities (Molecular Foundry and Advanced Light Source at Lawrence Berkeley National Laboratory) and was supported by the Director, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

  1. 1.
    BASF (1913) German Patent 29,378,7Google Scholar
  2. 2.
    BASF (1914) French Patent 46,842,7Google Scholar
  3. 3.
    Mittasch A, Schneider C (1916) Producing compounds containing carbon and hydrogen. US Patent 1,201,850Google Scholar
  4. 4.
    Davis BH, Occelli ML (2006) Fischer-Tropsch synthesis, catalysts and catalysis. Elsevier Science, BostonGoogle Scholar
  5. 5.
    Anderson RB (1984) The Fischer-Tropsch synthesis. Academic Press, OrlandoGoogle Scholar
  6. 6.
    Bezemer GL et al (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRefGoogle Scholar
  7. 7.
    den Breejen J et al (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131:7197–7203CrossRefGoogle Scholar
  8. 8.
    Melaet G, Lindeman AE, Somorjai GA (2013) Cobalt particle size effects in the Fischer–Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top Catal 57:500–507CrossRefGoogle Scholar
  9. 9.
    Yang J, Frøseth V, Chen D, Holmen A (2016) Particle size effect for cobalt Fischer-Tropsch catalysts based on in situ CO chemisorption. Surf Sci 648:67–73CrossRefGoogle Scholar
  10. 10.
    Ralston WT, Melaet G, Saephan T, Somorjai GA (2017) Evidence of structure sensitivity in the Fischer–Tropsch reaction on model cobalt nanoparticles by time-resolved chemical transient kinetics. Angew Chem Int Ed 56:7415–7419CrossRefGoogle Scholar
  11. 11.
    Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175CrossRefGoogle Scholar
  12. 12.
    Tauster SJ, Fung SC, Baker RT, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211:4487CrossRefGoogle Scholar
  13. 13.
    Melaet G et al (2014) Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. J Am Chem Soc 136:2260–2263CrossRefGoogle Scholar
  14. 14.
    Iglesia E, Soled SL, Fiato Ra, Via GH (1993) Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts. J Catal 143:345–368CrossRefGoogle Scholar
  15. 15.
    Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A Gen 161:59–78CrossRefGoogle Scholar
  16. 16.
    Jacobs G et al (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A Gen 233:263–281CrossRefGoogle Scholar
  17. 17.
    Ertl G, Knozinger H, Schuth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley-VCH, ChichesterCrossRefGoogle Scholar
  18. 18.
    Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Am Chem Soc 107:1692–1744Google Scholar
  19. 19.
    Morales BYF, Weckhuysen BM (2006) Promotion effects in Co-based Fischer–Tropsch catalysis. Catalysis 19:1–40Google Scholar
  20. 20.
    Campbell CT (1990) Bimetallic surface chemistry. Annu Rev Phys Chem 41:775–837CrossRefGoogle Scholar
  21. 21.
    Rodriguez JA, Goodman DW (1991) Surface science studies of the electronic and chemical properties of bimetallic. J Phys Chem 95:4196–4206CrossRefGoogle Scholar
  22. 22.
    Alayoglu S et al (2011) CO2 hydrogenation studies on Co and CoPt bimetallic nanoparticles under reaction conditions using TEM, XPS and NEXAFS. Top Catal 54:778–785CrossRefGoogle Scholar
  23. 23.
    Iablokov V et al (2012) Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096CrossRefGoogle Scholar
  24. 24.
    Van Embden J, Chesman ASR, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27:2246–2285CrossRefGoogle Scholar
  25. 25.
    Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y (2016) Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev 116:10414–10472CrossRefGoogle Scholar
  26. 26.
    Liu W-C et al (2016) Co–Rh nanoparticles for the hydrogenation of carbon monoxide: catalytic performance towards alcohol production and ambient pressure x-ray photoelectron spectroscopy study. Catal Lett 146:1574–1580CrossRefGoogle Scholar
  27. 27.
    Fillman LM, Tang SC (1984) Thermal decomposition of metal carbonyls: a thermogravimetry-mass spectrometry study. Thermochim Acta 75:71–84CrossRefGoogle Scholar
  28. 28.
    Alayoglu S et al (2013) Surface composition changes of redox stabilized bimetallic CoCu nanoparticles supported on silica under H2 and O2 atmospheres and during reaction between CO2 and H2: in situ x-ray spectroscopic characterization. J Phys Chem C 117:21803–21809CrossRefGoogle Scholar
  29. 29.
    Werner S, Johnson GR, Bell AT (2014) Synthesis and characterization of supported cobalt–manganese nanoparticles as model catalysts for Fischer–Tropsch synthesis. ChemCatChem 6:2881–2888CrossRefGoogle Scholar
  30. 30.
    Carenco S et al (2015) Synthesis and structural evolution of nickel–cobalt nanoparticles under H2 and CO2. Small 11:3045–3053  https://doi.org/10.1002/smll.201402795 CrossRefGoogle Scholar
  31. 31.
    Van Schooneveld MM et al (2012) Composition tunable cobalt-nickel and cobalt-iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl. J Nanoparticle Res 14:991–1003CrossRefGoogle Scholar
  32. 32.
    Schmidt-Winkel P et al (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121:254–255CrossRefGoogle Scholar
  33. 33.
    Beaumont SK et al (2013) Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2 in situ using ambient pressure X-ray photoelectron spectroscopy. Faraday Discuss 162:31CrossRefGoogle Scholar
  34. 34.
    Tao F et al (2010) Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc 132:8697–8703CrossRefGoogle Scholar
  35. 35.
    Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, LLC, Boca Raton.  https://doi.org/10.1021/ja041017a Google Scholar
  36. 36.
    Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168CrossRefGoogle Scholar
  37. 37.
    Vitos L, Ruban AV, Skriver HL, Kollár J (1998) The surface energy of metals. Surf Sci 411:186–202CrossRefGoogle Scholar
  38. 38.
    Kittel C (2005) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  39. 39.
    Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  40. 40.
    Owen EA, Madoc Jones D (1954) Effect of grain size on the crystal structure of cobalt. Proc Phys Soc Sect B 67: 456–466CrossRefGoogle Scholar
  41. 41.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  42. 42.
    Beitel G, Groot CPM, Oosterbeek H De, Wilson JH (1998) A combined in-situ PM-RAIRS and kinetic study of single-crystal cobalt catalysts under synthesis gas at pressures up to 300 mbar. J Phys Chem B 39:341–342Google Scholar
  43. 43.
    Weststrate CJ, Loosdrecht J Van De, Niemantsverdriet JW (2016) Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. J Catal 342:1–16CrossRefGoogle Scholar
  44. 44.
    Ehrensperger M, Wintterlin, J (2014) In situ high-pressure high-temperature scanning tunneling microscopy of a Co (0 0 0 1) Fischer–Tropsch model catalyst. J Catal 319:274–282CrossRefGoogle Scholar
  45. 45.
    Cats KH et al (2013) X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem Commun 49:4622–4624CrossRefGoogle Scholar
  46. 46.
    Navarro V, van Spronsen MA, Frenken JWM (2016) In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat Chem 8:929–934CrossRefGoogle Scholar
  47. 47.
    Han HL, Melaet G, Alayoglu S, Somorjai GA (2015) In situ microscopy and spectroscopy applied to surfaces at work. ChemCatChem 7:3625–3638CrossRefGoogle Scholar
  48. 48.
    Bluhm H et al (2007) In situ X-ray photoelectron studies of gas–solid interfaces at near-ambient conditions. MRS Bull 32:1022–1030CrossRefGoogle Scholar
  49. 49.
    Oku M, Hirokawa K, Ikeda S (1975) X-ray photoelectron-spectroscopy of manganese-oxygen systems. J Electron Spectrosc Relat Phenom 7:465–473CrossRefGoogle Scholar
  50. 50.
    Biesinger MC et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730CrossRefGoogle Scholar
  51. 51.
    Ducros R, Fusy J (1987) Core level binding energy shifts of rhenium surface atoms for a clean and oxygenated surface. J Electron Spectros Relat Phenomena 42:305–312CrossRefGoogle Scholar
  52. 52.
    Miniussi E et al (2012) Non-local effects on oxygen-induced surface core level shifts of Re(0001). J Phys Chem C 116:23297–23307CrossRefGoogle Scholar
  53. 53.
    Greiner MT et al (2014) The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: an in-situ XPS study. Z Fur Phys Chem 228:521–541CrossRefGoogle Scholar
  54. 54.
    Fairley N (2005) CasaXPS. http://www.casaxps.com
  55. 55.
    Abbate M et al (1992) Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode. Surf Interface Anal 18:65–69CrossRefGoogle Scholar
  56. 56.
    Zheng F et al (2011) In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments. Nano Lett 11:847–853CrossRefGoogle Scholar
  57. 57.
    Papaefthimiou V et al (2011) When a metastable oxide stabilizes at the nanoscale: wurtzite CoO formation upon dealloying of PtCo nanoparticles. J Phys Chem Lett 2:900–904CrossRefGoogle Scholar
  58. 58.
    Vada S, Hoff A, ÅdnaneS E, Schanke D, Holmen A (1995) Fischer-Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium. Top Catal 2:155–162CrossRefGoogle Scholar
  59. 59.
    Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl Catal A Gen 264:203–212CrossRefGoogle Scholar
  60. 60.
    Ronning M, Nicholson DG, Holmen A (2001) In situ EXAFS study of the bimetallic interaction in a rhenium-promoted alumina-supported cobalt Fischer-Tropsch catalyst. Catal Letters 72:141–146CrossRefGoogle Scholar
  61. 61.
    ASM International (1992) ASM handbook, ASM International, New YorkGoogle Scholar
  62. 62.
    Jacobs G, Ma W, Davis B (2014) Influence of reduction promoters on stability of cobalt/g-alumina Fischer-Tropsch synthesis catalysts. Catalysts 4:49–76CrossRefGoogle Scholar
  63. 63.
    Logdberg S et al (2010) On the selectivity of cobalt-based Fischer-Tropsch catalysts: evidence for a common precursor for methane and long-chain hydrocarbons. J Catal 274:84–98CrossRefGoogle Scholar
  64. 64.
    Rytter E, Tsakoumis NE, Holmen A (2016) On the selectivity to higher hydrocarbons in Co-based Fischer-Tropsch synthesis. Catal Today 261:3–16CrossRefGoogle Scholar
  65. 65.
    Xiang Y, Chitry V, Kruse N (2013) Selective catalytic CO hydrogenation to short- and long-chain C2+ alcohols. Catal Lett 143:936–941CrossRefGoogle Scholar
  66. 66.
    Xiang Y et al (2013) Long-chain terminal alcohols through catalytic CO hydrogenation. J Am Chem Soc 135:7114–7117CrossRefGoogle Scholar
  67. 67.
    Xiang Y, Barbosa R, Kruse N (2014) Higher alcohols through CO hydrogenation over CoCu catalysts: influence of precursor activation. ACS Catal 4:2792–2800CrossRefGoogle Scholar
  68. 68.
    Tsai Y-T, Mo X, Goodwin JG (2012) The synthesis of hydrocarbons and oxygenates during CO hydrogenation on CoCuZnO catalysts: analysis at the site level using multiproduct SSITKA. J Catal 285:242–250CrossRefGoogle Scholar
  69. 69.
    Mo X, Tsai Y-T, Gao J, Mao D, Goodwin JG (2012) Effect of component interaction on the activity of Co/CuZnO for CO hydrogenation. J Catal 285:208–215CrossRefGoogle Scholar
  70. 70.
    van Helden P, Ciobîcă IM, Coetzer RL (2015) The size-dependent site composition of FCC cobalt nanocrystals. Catal Today 261:48–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Walter T. Ralston
    • 1
    • 2
  • Wen-Chi Liu
    • 1
    • 2
  • Selim Alayoglu
    • 2
  • Gérôme Melaet
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations