Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts

  • 417 Accesses

  • 5 Citations

Abstract

Ethanol represents a promising energy source for powering fuel cells. The development of direct ethanol fuel cells is however challenged by both the sluggish kinetics of the ethanol oxidation reaction and the poor selectivity toward complete oxidation. In this work, we combine spectroelectrochemical studies of extended surfaces using sum frequency generation (SFG) and product-resolved electrocatalytic measurements under potentiostatic conditions to investigate the electro-oxidation of alcohols. By comparing the electro-oxidation of ethanol and ethylene glycol, we illustrate the different catalytic mechanisms of C–C bond cleavage and identify the role of β carbon in hindering the complete oxidation of ethanol toward CO2. Our findings provide new insights into the development of efficient electrocatalysts for multi-carbon alcohol oxidation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Goldemberg J (2007) Science 315:808–810

  2. 2.

    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Science 311:506–508

  3. 3.

    Demirbas A (2007) Prog Energy Combust 33:1–18

  4. 4.

    Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Appl Energy 145:80–103

  5. 5.

    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283–296

  6. 6.

    Antolini E (2007) J Power Sources 170:1–12

  7. 7.

    Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Phys Chem Chem Phys 9:2686–2696

  8. 8.

    Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Catal Today 202:197–209

  9. 9.

    Lai SCS, Koper MTM (2008) Faraday Discuss 140:399–416

  10. 10.

    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Faraday Discuss 140:379–397

  11. 11.

    Leung LWH, Chang SC, Weaver MJ (1989) J Electroanal Chem 266:317–336

  12. 12.

    Wang H, Jusys Z, Behm RJ (2004) J Phys Chem B 108:19413–19424

  13. 13.

    Rao V, Hariyanto, Cremers C, Stimming U (2007) Fuel Cells 7:417–423

  14. 14.

    Lai SCS, Kleijn SEF, Ozturk FTZ, Vellinga VCV, Koning J, Rodriguez P, Koper MTM (2010) Catal Today 154:92–104

  15. 15.

    Sun S, Heinen M, Jusys Z, Behm RJ (2012) J Power Sources 204:1–13

  16. 16.

    Shao MH, Adzic RR (2005) Electrochim Acta 50:2415–2422

  17. 17.

    Lai SCS, Kleyn SEF, Rosca V, Koper MTM (2008) J Phys Chem C 112:19080–19087

  18. 18.

    Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114–9123

  19. 19.

    Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) J Catal 278:181–188

  20. 20.

    Kavanagh R, Cao XM, Lin WF, Hardacre C, Hu P (2012) Angew Chem Int Ed 51:1572–1575

  21. 21.

    Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) J Phys Chem 97:12020–12029

  22. 22.

    Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C (1998) J Electroanal Chem 444:41–53

  23. 23.

    Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Chem Rev 114:12397–12429

  24. 24.

    de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) J Phys Chem B 106:9825–9830

  25. 25.

    Neto AO, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc 149:A272–A279

  26. 26.

    Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) J Power Sources 131:217–223

  27. 27.

    Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221–233

  28. 28.

    Sen S, Sen F, Gokagac G (2011) Phys Chem Chem Phys 13:6784–6792

  29. 29.

    Zhu MY, Sun GQ, Xin Q (2009) Electrochim Acta 54:1511–1518

  30. 30.

    Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Appl Catal B Environ 82:89–102

  31. 31.

    Camara GA, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812–815

  32. 32.

    Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) J Power Sources 158:18–24

  33. 33.

    Jin JM, Sheng T, Lin X, Kavanagh R, Hamer P, Hu PJ, Hardacre C, Martinez-Bonastre A, Sharman J, Thompsett D, Lin WF (2014) Phys Chem Chem Phys 16:9432–9440

  34. 34.

    Salciccioli M, Yu WT, Barteau MA, Chen JGG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004

  35. 35.

    Schnaidt J, Heinen M, Jusys Z, Behm RJ (2012) J Phys Chem C 116:2872–2883

  36. 36.

    Aran-Ais RM, Herrero E, Feliu JM (2014) Electrochem Commun 45:40–43

  37. 37.

    Shen YR (1996) Proc Natl Acad Sci USA 93:12104–12111

  38. 38.

    Baldelli S, Gewirth AA (2006) Adv Electrochem Sci Eng 9:163–198

  39. 39.

    Gomes JF, Bergamaski K, Pinto MFS, Miranda PB (2013) J Catal 302:67–82

  40. 40.

    Wang H, Jusys Z, Behm RJ (2006) J Electroanal Chem 595:23–36

  41. 41.

    Delpeuch AB, Asset T, Chatenet M, Cremers C (2014) J Electrochem Soc 161:F918–F924

  42. 42.

    Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Behm RJ, Feliu JM (2016) J Electroanal Chem 763:116–124

  43. 43.

    Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021–10031

  44. 44.

    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215–1221

  45. 45.

    Rizo R, Lazaro MJ, Pastor E, Koper MTM (2016) ChemElectroChem 3:2196–2201

  46. 46.

    Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) Nano Res 1:229–234

  47. 47.

    Baldelli S, Markovic N, Ross P, Shen Y-R, Somorjai G (2000) Sum-frequency generation of CO on (111) and polycrystalline platinum electrode surfaces: evidence for SFG invisible surface CO. J Phys Chem 103:8920–8925

  48. 48.

    Markovic NM, Ross PN (2002) Surf Sci Rep 45:121–229

  49. 49.

    Lopez-Cudero A, Cuesta A, Gutierrez C (2005) J Electroanal Chem 579:1–12

  50. 50.

    Cuesta A, Couto A, Rincon A, Perez MC, Lopez-Cudero A, Gutierrez C (2006) J Electroanal Chem 586:184–195

  51. 51.

    Lopez-Cudero A, Cuesta A, Gutierrez C (2006) J Electroanal Chem 586:204–216

  52. 52.

    Strmcnik DS, Tripkovic DV, van der Vliet D, Chang KC, Komanicky V, You H, Karapetrov G, Greeley J, Stamenkovic VR, Markovic NM (2008) J Am Chem Soc 130:15332–15339

  53. 53.

    Farias MJS, Camara GA, Feliu JM (2015) J Phys Chem C 119:20272–20282

  54. 54.

    Dederichs F, Friedrich KA, Daum W (2000) J Phys Chem B 104:6626–6632

  55. 55.

    Ferre-Vilaplana A, Buso-Rogero C, Feliu JM, Herrero E (2016) J Phys Chem C 120:11590–11597

  56. 56.

    Wang H-F, Liu Z-P (2008) J Am Chem Soc 130:10996–11004

  57. 57.

    Lai SCS, Koper MTM (2010) J Phys Chem Lett 1:1122–1125

  58. 58.

    Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR (2012) ACS Catal 2:1358–1362

  59. 59.

    van der Vliet DF, Wang C, Li DG, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Angew Chem Int Ed 51:3139–3142

  60. 60.

    Wang H, Jusys Z, Behm RJ (2009) Electrochim Acta 54:6484–6498

Download references

Acknowledgements

This work was supported by the Young Investigator Award of Army Research Office (W911 NF-15-1-0123) and the Discovery Award of the Johns Hopkins University.

Author information

Correspondence to David H. Gracias or Chao Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 857 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewan, S., Raciti, D., Liu, Y. et al. Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts. Top Catal 61, 1035–1042 (2018). https://doi.org/10.1007/s11244-018-0930-5

Download citation

Keywords

  • Ethanol oxidation
  • Platinum electrocatalysts
  • Fuel cells
  • Sum frequency generation spectroscopy
  • SFG