Topics in Catalysis

, Volume 61, Issue 7–8, pp 585–590 | Cite as

Quantification of the Michael-Acceptor Reactivity of α,β-Unsaturated Acyl Azolium Ions

  • Alison Levens
  • Feng An
  • Jared E. M. Fernando
  • Armin R. Ofial
  • David W. LuptonEmail author
  • Herbert MayrEmail author
Original Paper


2-Cinnamoylimidazolium ions 4 have been synthesized by treatment of 2-cinnamoylimidazoles 8 with methyl triflate. They were characterised by NMR and mass spectroscopy, in one case (4f) also by X-ray analysis. The kinetics of their reactions [and also those of cinnamoyl fluoride (1)] with stabilised carbanions 9a–e and silyl ketene acetal 9f (reference nucleophiles) were measured photometrically. The correlation log k(20 °C) = sN (E + N) was used to calculate the electrophilicity parameters E of the cinnamoyl azolium ions 4 from the resulting second-order rate constants k and the previously reported N and sN parameters of the reference nucleophiles 9. All 2-cinnamoylimidazolium ions 4 were found to be 2–4 orders of magnitude more electrophilic than cinnamoyl fluoride (1) showing that the direct attack of nucleophiles at 1 can be avoided if sufficient concentrations of 4 are produced in the NHC-catalysed reactions of 1 with nucleophiles. From the range of electrophilicity(–12 < E < − 10) for the cinnamoylimidazolium ions 4 one can derive that only nucleophiles stronger than N ≈ 7 will react with 4 at 20 °C in reasonable time, suggesting that in NHC-catalysed reactions of cinnamoyl fluoride (1) with silyl enol ethers (typically 4 < N < 7), enolate ions, produced by fluoride-induced desilylation of silyl enol ethers, are the active nucleophiles.


Kinetics Organocatalysis Nucleophilic carbenes Reactivity Electrophilicity 



The authors thank the Australian Research Council (Discovery Program DP120101315) and the Deutsche Forschungsgemeinschaft (SFB 749, Project B1) for financial support and Dr. Peter Mayer for the X-ray analysis of 4f. DWL is grateful to the Alexander von Humboldt Foundation for the Ludwig-Leichardt Award.

Supplementary material

11244_2018_914_MOESM1_ESM.docx (17.4 mb)
Supplementary material 1 (DOCX 17796 KB)


  1. 1.
    Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655CrossRefPubMedGoogle Scholar
  2. 2.
    Campbell CD, Ling KB, Smith AD (2011) In: Cazin CSJ (ed) N-heterocyclic carbenes in transition metal catalysis and organocatalysis. Springer, Dordrecht, pp 263–297Google Scholar
  3. 3.
    Chiang PC, Díez-González S, Bode JW (2017) In: Díez-González S (ed) N-heterocyclic carbenes: from laboratory curiositities to efficient synthetic tools, 2nd edn. The Royal Society of Chemistry, Cambridge, pp 534–566 (RSC catalysis series No. 27)Google Scholar
  4. 4.
    Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V (2011) Chem Soc Rev 40:5336–5346CrossRefPubMedGoogle Scholar
  5. 5.
    Menon RS, Biju AT, Nair V (2016) Beilstein J Org Chem 12:444–461CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vora HU, Wheeler P, Rovis T (2012) Adv Synth Catal 354:1617–1639CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Douglas J, Churchill G, Smith AD (2012) Synthesis 44:2295–2309CrossRefGoogle Scholar
  8. 8.
    Grossmann A, Enders D (2012) Angew Chem Int Ed 51:314–325CrossRefGoogle Scholar
  9. 9.
    Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522CrossRefPubMedGoogle Scholar
  10. 10.
    Izquierdo J, Hutson GE, Cohen DT, Scheidt KA (2012) Angew Chem Int Ed 51:11686–11698CrossRefGoogle Scholar
  11. 11.
    Ryan SJ, Candish L, Lupton DW (2013) Chem Soc Rev 42:4906–4917CrossRefPubMedGoogle Scholar
  12. 12.
    De Sarkar S, Biswas A, Samanta RC, Studer A (2013) Chem Eur J 19:4664–4678CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang C, Hooper JF, Lupton DW (2017) ACS Catal 7:2583–2596CrossRefGoogle Scholar
  14. 14.
    Mahatthananchai J, Bode JW (2014) Acc Chem Res 47:696–707CrossRefPubMedGoogle Scholar
  15. 15.
    Chauhan P, Enders D (2014) Angew Chem Int Ed 53:1485–1487CrossRefGoogle Scholar
  16. 16.
    Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496CrossRefPubMedGoogle Scholar
  17. 17.
    Flanigan DM, Romanov-Michailidis F, White NA, Rovis T (2015) Chem Rev 115:9307–9387CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ryan SJ, Candish L, Lupton DW (2009) J Am Chem Soc 131:14176–14177CrossRefPubMedGoogle Scholar
  19. 19.
    De Sarkar S, Studer A (2010) Angew Chem Int Ed 49:9266–9269CrossRefGoogle Scholar
  20. 20.
    Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW (2010) J Am Chem Soc 132:8810–8812CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sun FG, Sun LH, Ye S (2011) Adv Synth Catal 353:3134–3138CrossRefGoogle Scholar
  22. 22.
    Mo J, Shen L, Chi YR (2013) Angew Chem Int Ed 52:8588–8591CrossRefGoogle Scholar
  23. 23.
    Wu X, Liu B, Zhang Y, Jeret M, Wang H, Zheng P, Yang S, Song BA, Chi YR (2016) Angew Chem Int Ed 55:12280–12284CrossRefGoogle Scholar
  24. 24.
    Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT (2016) Angew Chem Int Ed 55:268–272CrossRefGoogle Scholar
  25. 25.
    Ryan SJ, Candish L, Lupton DW (2011) J Am Chem Soc 133:4694–4697CrossRefPubMedGoogle Scholar
  26. 26.
    Candish L, Lupton DW (2013) J Am Chem Soc 135:58–61CrossRefPubMedGoogle Scholar
  27. 27.
    Candish L, Levens A, Lupton DW (2014) J Am Chem Soc 136:14397–14400CrossRefPubMedGoogle Scholar
  28. 28.
    Bera S, Samanta RC, Daniliuc CG, Studer A (2014) Angew Chem Int Ed 53:9622–9626CrossRefGoogle Scholar
  29. 29.
    Mondal S, Yetra SR, Patra A, Kunte SS, Gonnade RG, Biju AT (2014) Chem Commun 50:14539–14542CrossRefGoogle Scholar
  30. 30.
    Bera S, Daniliuc CG, Studer A (2015) Org Lett 17:4940–4943CrossRefPubMedGoogle Scholar
  31. 31.
    Liang ZQ, Wang DL, Zhang HM, Ye S (2015) Org Lett 17:5140–5143CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang G, Xu W, Liu J, Das DK, Yang S, Perveen S, Zhang H, Li X, Fang X (2017) Chem Commun 53:13336–13339CrossRefGoogle Scholar
  33. 33.
    Mahatthananchai J, Kaeobamrung J, Bode JW (2012) ACS Catal 2:494–503CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lyngvi E, Bode JW, Schoenebeck F (2012) Chem Sci 3:2346–2350CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Candish L, Lupton DW (2011) Org Biomol Chem 9:8182–8189CrossRefPubMedGoogle Scholar
  36. 36.
    Samanta RC, Maji B, De Sarkar S, Bergander K, Fröhlich R, Mück-Lichtenfeld C, Mayr H, Studer A (2012) Angew Chem Int Ed 51:5234–5238CrossRefGoogle Scholar
  37. 37.
    Paul M, Breugst M, Neudörfl JM, Sunoj RB, Berkessel A (2016) J Am Chem Soc 138:5044–5051CrossRefPubMedGoogle Scholar
  38. 38.
    Yatham VR, Neudörfl JM, Schlörer NE, Berkessel A (2015) Chem Sci 6:3706–3711CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Berkessel A, Yatham VR, Elfert S, Neudörfl JM (2013) Angew Chem Int Ed 52:11158–11162CrossRefGoogle Scholar
  40. 40.
    Berkessel A, Elfert S, Etzenbach-Effers K, Teles JH (2010) Angew Chem Int Ed 49:7120–7124CrossRefGoogle Scholar
  41. 41.
    Zhao X, Glover GS, Oberg KM, Dalton DM, Rovis T (2013) Synlett 24:1229–1232CrossRefGoogle Scholar
  42. 42.
    Moore JL, Silvestri AP, de Alaniz JR, DiRocco DA, Rovis T (2011) Org Lett 13:1742–1745CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cohen DT, Johnston RC, Rosson NT, Cheong PHY, Scheidt KA (2015) Chem Commun 51:2690–2693CrossRefGoogle Scholar
  44. 44.
    Johnston RC, Cohen DT, Eichman CC, Scheidt KA, Cheong PHY (2014) Chem Sci 5:1974–1982CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ryan SJ, Stasch A, Paddon-Row MN, Lupton DW (2012) J Org Chem 77:1113–1124CrossRefPubMedGoogle Scholar
  46. 46.
    Maji B, Breugst M, Mayr H (2011) Angew Chem Int Ed 50:6915–6919CrossRefGoogle Scholar
  47. 47.
    Levens A, An F, Breugst M, Mayr H, Lupton DW (2016) Org Lett 18:3566–3569CrossRefPubMedGoogle Scholar
  48. 48.
    Rovis T (2008) Chem Lett 37:2–7CrossRefGoogle Scholar
  49. 49.
    Mahatthananchai J, Bode JW (2012) Chem Sci 3:192–197CrossRefPubMedGoogle Scholar
  50. 50.
    Collett CJ, Massey RS, Maguire OR, Batsanov AS, O’Donoghue AC, Smith AD (2013) Chem Sci 4:1514–1522CrossRefGoogle Scholar
  51. 51.
    Collett CJ, Massey RS, Taylor JE, Maguire OR, O’Donoghue AC, Smith AD (2015) Angew Chem Int Ed 54:6887–6892CrossRefGoogle Scholar
  52. 52.
    Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) J Am Chem Soc 123:9500–9512CrossRefPubMedGoogle Scholar
  53. 53.
    Mayr H, Patz M (1994) Angew Chem Int Ed Engl 33:938–957CrossRefGoogle Scholar
  54. 54.
    Mayr H, Ofial AR (2008) J Phys Org Chem 21:584–595CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ChemistryMonash UniversityClaytonAustralia
  2. 2.Department ChemieLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations