Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Methanol Economy: Methane and Carbon Dioxide Conversion

Abstract

Need for clean energy is imminent and methanol is considered as a promising alternative energy source. Conventional process for the production of methanol has been achieved via syngas which is derived by the steam reforming of methane or naphtha and the gasification of coal. Methanol can also be prepared by direct oxidation of methane (natural gas) or reduction of carbon dioxide (CO2) with hydrogen. In this way, carbon-neutral cycling can be achieved and world’s dependence on fossil fuels will be alleviated. In this minireview, we will address case by case some recent advancements in the conversion of methane and CO2 to methanol both homogeneously and heterogeneously with emphasis on the contribution from Professor George A. Olah’s and our group. In the end, a short outlook is provided towards existing problems and future opportunities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

a Adapted with permission from reference [42]. Copyright 2013 American Chemical Society; bg adapted with permission from reference [37]. Copyright 2015 Springer Nature

Fig. 3

Adapted with permission from reference [44]. Copyright 2016 American Chemical Society

Fig. 4

ac Adapted with permission from reference [55]. Copyright 2016 American Chemical Society; d, e adapted with permission from reference [52]. Copyright 2017 American Chemical Society

Fig. 5

a Adapted with permission from reference [68]. Copyright 2005 American Chemical Society; b adapted with permission from reference [69]. Copyright 2009 National Academy of Sciences

Fig. 6

a Adapted with permission from reference [71]. Copyright 2015 Springer Nature; b adapted with permission from reference [72]. Copyright 2017 Royal Society of Chemistry

Fig. 7

Adapted with permission from reference [77]. Copyright 2015, American Chemical Society

References

  1. 1.

    Olah GA (2005) Angew Chem Int Ed 55:2636–2639

  2. 2.

    Olah GA (2013) Angew Chem Int Ed 52:104–107

  3. 3.

    Goeppert A, Olah GA, Prakash GKS (2018) Toward a sustainable carbon cycle: the methanol economy. Elsevier Inc, Amsterdam

  4. 4.

    Anderson JE, Kramer U, Mueller SA, Wallington TJ (2010) Energy Fuels 24:6576–6585

  5. 5.

    Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H (2013) Energy 54:333–342

  6. 6.

    Abu-Zaid M, Badran O, Yamin J (2004) Energy Fuels 18:312–315

  7. 7.

    Moffat A (1991) Science 251:514–515

  8. 8.

    Kumar P, Dutta K, Das S, Kundu PP (2014) Int J Energy Res 38:1367–1390

  9. 9.

    Ahmed M, Dincer I (2011) Int J Energy Res 35:1213–1228

  10. 10.

    Aricò AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133–161

  11. 11.

    McGrath KM, Prakash GKS, Olah GA (2004) J Ind Eng Chem 10:1063–1080

  12. 12.

    Radenahmad N, Ahmed A, Iskandar PI, Rahman SMH, Eriksson S, Azad AK (2016) Renew Sustain Energy Rev 57:1347–1358

  13. 13.

    Ilias S, Bhan A (2013) ACS Catal 3:18–31

  14. 14.

    Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922–1938

  15. 15.

    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810–5831

  16. 16.

    Sheldon D (2017) Johnson Matthey Technol Rev 61:172–182

  17. 17.

    Wender I (1996) Fuel Process Technol 48:189–297

  18. 18.

    Aresta M, Dibenedetto A (2007) Dalton Trans 0:2975–2992

  19. 19.

    Chanchlani KG, Hudgins RR, Silveston PL (1992) J Catal 136:59–75

  20. 20.

    Waugh KC (1992) Catal Today 15:51–75

  21. 21.

    Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333–338

  22. 22.

    Kuld S, Thorhauge M, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Science 352:969–974

  23. 23.

    Samson K, Sliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul JF, Ruggiero-Mikoajczyk M, Grabowski R, Soczyński J (2014) ACS Catal 4:3730–3741

  24. 24.

    Baltes C, Vukojević S, Schüth F (2008) J Catal 258:334–344

  25. 25.

    Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) J Catal 249:185–194

  26. 26.

    Kurtz M, Bauer N, Büscher C, Wilmer H, Hinrichsen O, Becker R, Rabe S, Merz K, Driess M, Fischer R, Muhler M (2004) Catal Lett 92:49–52

  27. 27.

    Becker R, Parala H, Hipler F, Tkachenko OP, Klementiev KV, Grünert W, Wilmer H, Hinrichsen O, Muhler M, Birkner A, Wöll C, Schäfer S, Fischer RA (2004) Angew Chem Int Ed 43:2839–2842

  28. 28.

    Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Science 355:1296–1299

  29. 29.

    Labinger JA, Bercaw JE (2002) Nature 417:507–514

  30. 30.

    Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28:154–162

  31. 31.

    Barton DHR (1990) Aldrichimica Acta 23:1990

  32. 32.

    Kwon Y, Kim TY, Kwon G, Yi J, Lee H (2017) J Am Chem Soc 139:17694–17699

  33. 33.

    Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño MA, Pahls DR, Fulton JL, Camaioni DM, Li Z, Ray D, Mehdi BL, Browning ND, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Lercher JA (2017) J Am Chem Soc 139:10294–10301

  34. 34.

    Rahim A, Hasbi M, Forde MM, Jenkins RL, Hammond C, He Q, Dimitratos N, Lopez-Sanchez JA, Carley AF, Taylor SH, Willock DJ, Murphy DM, Kiely CJ, Hutchings GJ (2013) Angew Chem 125:1318–1322

  35. 35.

    Goeppert A, Czaun M, Jones J-P, Prakash GKS, Olah GA (2014) Chem Soc Rev 43:7995–8048

  36. 36.

    http://carbonrecycling.is. Accessed 15 Jan 2018

  37. 37.

    Li CS, Melaet G, Ralston WT, An K, Brooks C, Ye Y, Liu YS, Zhu J, Guo J, Alayoglu S, Somorjai GA (2015) Nat Commun 6:6538. https://doi.org/10.1038/ncomms7538

  38. 38.

    Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J (2016) Angew Chem Int Ed 55:6261–6265

  39. 39.

    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C (2017) Sci Adv 3:e1701290

  40. 40.

    Kattel S, Liu P, Chen JG (2017) J Am Chem Soc 139:9739–9754

  41. 41.

    Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) ACS Catal 5:6696–6706

  42. 42.

    An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) J Am Chem Soc 135:16689–16696

  43. 43.

    Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893–897

  44. 44.

    Rungtaweevoranit B, Baek J, Araujo JR, Archanjo BS, Choi KM, Yaghi OM, Somorjai GA (2016) Nano Lett 16:7645–7649

  45. 45.

    Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X (2012) Chem Commun 48:11656–11658

  46. 46.

    Huff CA, Sanford MS (2011) J Am Chem Soc 133:18122–18125

  47. 47.

    Wesselbaum S, Vom Stein T, Klankermayer J, Leitner W (2012) Angew Chem Int Ed 51:7499–7502

  48. 48.

    Alberico E, Nielsen M (2015) Chem Commun 51:6714–6725

  49. 49.

    Li Y-N, Ma R, He L-N, Diao Z-F (2014) Catal Sci Technol 4:1498–1512

  50. 50.

    Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Nat Chem 3:609–614

  51. 51.

    Schneidewind J, Adam R, Baumann W, Jackstell R, Beller M (2017) Angew Chem Int Ed 56:1890–1893

  52. 52.

    Kar S, Goeppert A, Kothandaraman J, Prakash GKS (2017) ACS Catal 7:6347–6351

  53. 53.

    Breeze P (2009) Science 325:1647–1652

  54. 54.

    Chu S (2009) Science 325:1599

  55. 55.

    Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) J Am Chem Soc 138:778–781

  56. 56.

    Rezayee NM, Huff CA, Sanford MS (2015) J Am Chem Soc 137:1028–1031

  57. 57.

    Ravi M, Ranocchiari M, Bokhoven JA, Van (2017) Angew Chem Int Ed 56:16464–16483

  58. 58.

    Nguyen LD, Loridant S, Launay H, Pigamo A, Dubois JL, Millet JMM (2006) J Catal 237:38–48

  59. 59.

    Zhen KJ, Khan MM, Mak CH, Lewis KB, Somorjai GA (1985) J Catal 94:501–507

  60. 60.

    Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW (1998) Catal Today 42:217–224

  61. 61.

    Sugino T, Kido A, Azuma N, Ueno A, Udagawa Y (2000) J Catal 190:118–127

  62. 62.

    Hargreaves JSJ, Hutchings GJ, Joyner RW (1990) Nature 348:428–429

  63. 63.

    Fornés V, López C, López HH, Martinez A (2003) Appl Catal A 249:345–354

  64. 64.

    Briot P, Primet M (1991) Appl Catal 68:301–314

  65. 65.

    Hicks RF, Qi H, Young ML, Lee RG (1990) J Catal 122:280–294

  66. 66.

    Rotko M, Machocki A, Słowik G (2017) Catal Lett 147:1783–1791

  67. 67.

    Sobolev VI, Dubkov KA, Panna OV, Panov GI (1995) Catal Today 24:251–252

  68. 68.

    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

  69. 69.

    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci 106:18908–18913

  70. 70.

    Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Catal Today 110:303–309

  71. 71.

    Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546. https://doi.org/10.1038/ncomms8546

  72. 72.

    Kim Y, Kim TY, Lee H, Yi J (2017) Chem Commun 53:4116–4119

  73. 73.

    Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA (2016) J Catal 338:305–312

  74. 74.

    Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y (2016) ACS Cent Sci 2:424–429

  75. 75.

    Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EMC, Ranocchiari M, Vanbokhoven JA (2016) Angew Chem 128:5557–5561

  76. 76.

    Sushkevich VL, Palagin D, Ranocchiari M, Bokhoven JA van (2017) Science 356:523–527

  77. 77.

    Muraza O, Galadima A (2015) Int J Energy Res 39:1196–1216

  78. 78.

    Olah GA, Goeppert A, Czaun M, Prakash GKS (2013) J Am Chem Soc 135:648–650

  79. 79.

    Olah GA, Prakash GKS, Goeppert A, Czaun M, Mathew T (2013) J Am Chem Soc 135:10030–10031

  80. 80.

    Olah GA, Goeppert A, Czaun M, Mathew T, May RB, Prakash GKS (2015) J Am Chem Soc 137:8720–8729

  81. 81.

    Kumar N, Shojaee M, Spivey JJ (2015) Curr Opin Chem Eng 9:8–15

  82. 82.

    Sousa-Aguiar EF, Noronha FB, Faro A Jr (2011) Catal Sci Technol 1:698–713

  83. 83.

    Olah GA, Prakash GKS (2015) US Patent: 8,980,961

  84. 84.

    Olah GA (2013) Catal Lett 143:983–987

  85. 85.

    Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Norskov JK, Schlogl R (2015) ChemCatChem 7:1105–1111

  86. 86.

    Ye R, Zhukhovitskiy AV, Deraedt CV, Toste FD, Somorjai GA (2017) Acc Chem Res 50:1894–1901

  87. 87.

    Guzman J, Gates BC (2003) Dalton Trans 0:3303–3318

  88. 88.

    Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núnez-Zarur F, Zhizhko PA (2016) Chem Rev 116:323–421

  89. 89.

    Copéret C, Chabanas M, Saint-Arroman RP, Basset J-M (2003) Angew Chem Int Ed 42:156–181

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological, and Biosciences, U.S. Department of Energy, under Contract DEAC02-05CH11231.

Author information

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Baek, J. & Somorjai, G.A. The Methanol Economy: Methane and Carbon Dioxide Conversion. Top Catal 61, 530–541 (2018). https://doi.org/10.1007/s11244-018-0907-4

Download citation

Keywords

  • Methanol economy
  • CO2 hydrogenation
  • Direct methane to methanol (DMTM) process
  • Bi-reforming of methane