Advertisement

Topics in Catalysis

, Volume 61, Issue 7–8, pp 575–584 | Cite as

Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+

  • Marjan Firouzbakht
  • Nicole J. Rijs
  • Maria Schlangen
  • Martin Kaupp
  • Helmut Schwarz
Original Paper

Abstract

The thermal reactions of [CoX]+ (X = CN, F, Cl, Br, O, OH) with carbon dioxide have been investigated experimentally and theoretically by using electrospray ionization mass spectrometry (ESI-MS) and density functional theory. Surprisingly, in contrast to the complete inertness of [CoX]+ (X = F, Cl, Br, O, OH) toward carbon dioxide, [Co(CN)]+ activates carbon dioxide to form the elusive [NCCO2Co]+ ion in the gas phase. Mechanistic investigation into this ligand-controlled CO2 activation via C_C bond formation, mediated by a first-row late transition-metal complex, reveals that the inertness of [CoX]+ (X = F, Cl, Br, O, OH) is due to kinetic barriers located above the entrance asymptote. The exception is the [Co(CN)]+/CO2 couple, for which the thermal C–C bond formation is both thermochemically and kinetically accessible. Interestingly, a cyanoformate ligand is most likely also formed in the reaction of [Fe(CN)]+ with CO2; cyanoformate formation had been suggested earlier as a protective mechanism to prevent cyanide complexation to the iron-containing active site of the enzyme ACC oxidase (Murphy et al., in Science 344:75–78, 2014).

Keywords

Carbon dioxide Cobalt complexes C–C bond formation Ligand effect ESI-MS Cyano ligand 

Notes

Acknowledgements

This work has been supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (DFG), and the Cluster of Excellence “Unifying Concepts in Catalysis” (coordinated by the Technische Universität Berlin and funded by the DFG). NJR gratefully acknowledges support from the QUT Institute for Future Environments (IFE) and the Australian Research Council (ARC) for an ARC Discovery Early Career Researcher Award (DECRA) (project number DE170100677). For computational resources, the Institut für Mathematik at the Technische Universität Berlin is acknowledged. Dr. Shaodong Zhou is appreciated for suggestions and comments. We thank Andrea Beck and Dr. Thomas Weiske for technical assistance.

Compliance with Ethical Standards

Conflict of interest

This manuscript has not been submitted elsewhere for consideration, and the authors declare not competing financial interests.

Supplementary material

11244_2018_903_MOESM1_ESM.docx (279 kb)
Supplementary material 1 (DOCX 279 KB)

References

  1. 1.
    Munday PL (2017) Biol Lett 13.  https://doi.org/10.1098/rsbl.2017.0438
  2. 2.
    Zickfeld K, Solomon S, Gilford DM (2017) Proc Natl Acad Sci USA 114:657–662CrossRefPubMedGoogle Scholar
  3. 3.
    Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537CrossRefGoogle Scholar
  4. 4.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ (2013) Chem Rev 113:6621–6658CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aresta M, Dibenedetto A, Angelini A (2014) Chem Rev 114:1709–1742CrossRefPubMedGoogle Scholar
  6. 6.
    Grice KA (2017) Coord Chem Rev 336:78–95CrossRefGoogle Scholar
  7. 7.
    Havran V, Duduković MP, Lo CS (2011) Ind Eng Chem Res 50:7089–7100CrossRefGoogle Scholar
  8. 8.
    Wang M-Y, Cao Y, Liu X, Wang N, He L-N, Li S-H (2017) Green Chem 19:1240–1244CrossRefGoogle Scholar
  9. 9.
    Schuchmann K, Müller V (2013) Science 342:1382–1385CrossRefPubMedGoogle Scholar
  10. 10.
    Yin X, Moss JR (1999) Coord Chem Rev 181:27–59CrossRefGoogle Scholar
  11. 11.
    Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GKS (2002) J Am Chem Soc 124:11379–11391CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933CrossRefPubMedGoogle Scholar
  13. 13.
    Song Q-W, Zhou Z-H, He L-N (2017) Green Chem 19:3707–3728CrossRefGoogle Scholar
  14. 14.
    Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Nat Chem 4:383–388CrossRefPubMedGoogle Scholar
  15. 15.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Chem Rev 112:724–781CrossRefPubMedGoogle Scholar
  16. 16.
    Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) Chem Rev 115:12936–12973CrossRefPubMedGoogle Scholar
  17. 17.
    Aresta M, Dibenedetto A, Quaranta E (2016) J Catal 343:2–45CrossRefGoogle Scholar
  18. 18.
    Alper E, Yuksel Orhan O (2017) Petroleum 3:109–126CrossRefGoogle Scholar
  19. 19.
    Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) J Am Chem Soc 135:11533–11536CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036–2051CrossRefPubMedGoogle Scholar
  21. 21.
    Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Chem Eur J 18:72–75CrossRefPubMedGoogle Scholar
  22. 22.
    Badiei YM, Wang W-H, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E (2013) Inorg Chem 52:12576–12586CrossRefPubMedGoogle Scholar
  23. 23.
    Zeikus J, Kerby R, Krzycki J (1985) Science 227:1167–1173CrossRefPubMedGoogle Scholar
  24. 24.
    Pirrung MC (1999) Acc Chem Res 32:711–718CrossRefGoogle Scholar
  25. 25.
    Murphy LJ, Robertson KN, Harroun SG, Brosseau CL, Werner-Zwanziger U, Moilanen J, Tuononen HM, Clyburne JAC (2014) Science 344:75–78CrossRefPubMedGoogle Scholar
  26. 26.
    Hering C, von Langermann J, Schulz A (2014) Angew Chem Int Ed 53:8282–8284CrossRefGoogle Scholar
  27. 27.
    Braga D, D’Oria E, Grepioni F, Mota F, Novoa JJ, Rovira C (2002) Chem Eur J 8:1173–1180CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang X, Gross U, Seppelt K (1995) Angew Chem Int Ed Engl 34:1858–1860CrossRefGoogle Scholar
  29. 29.
    Schwarz H (2017) Coord Chem Rev 334:112–123CrossRefGoogle Scholar
  30. 30.
    Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:1232–1241CrossRefPubMedGoogle Scholar
  31. 31.
    Tang S-Y, Rijs NJ, Li J, Schlangen M, Schwarz H (2015) Chem Eur J 21:8483–8490CrossRefPubMedGoogle Scholar
  32. 32.
    Li J, González-Navarrete P, Schlangen M, Schwarz H (2015) Chem Eur J 21:7780–7789CrossRefPubMedGoogle Scholar
  33. 33.
    Firouzbakht M, Rijs NJ, González-Navarrete P, Schlangen M, Kaupp M, Schwarz H (2016) Chem Eur J 22:10581–10589CrossRefPubMedGoogle Scholar
  34. 34.
    Firouzbakht M, Schlangen M, Kaupp M, Schwarz H (2016) J Catal 343:68–74CrossRefGoogle Scholar
  35. 35.
    Jiang L-X, Zhao C, Li X-N, Chen H, He S-G (2017) Angew Chem Int Ed 56:4187–4191CrossRefGoogle Scholar
  36. 36.
    Zhang X, Liu G, Meiwes-Broer K-H, Ganteför G, Bowen K (2016) Angew Chem Int Ed 55:9644–9647CrossRefGoogle Scholar
  37. 37.
    Zhou S, Li J, Firouzbakht M, Schlangen M, Schwarz H (2017) J Am Chem Soc 139:6169–6176CrossRefPubMedGoogle Scholar
  38. 38.
    Schröder D, Schwarz H, Schenk S, Anders E (2003) Angew Chem Int Ed 42:5087–5090CrossRefGoogle Scholar
  39. 39.
    Trage C, Schröder D, Schwarz H (2005) Chem Eur J 11:619–627CrossRefPubMedGoogle Scholar
  40. 40.
    Schröder D, Roithová J, Schwarz H (2006) Int J Mass Spectrom 254:197–201CrossRefGoogle Scholar
  41. 41.
    Scientific Instrument Service: Isotope Distribution Calculator and Mass Spec Plotter. http://www.sisweb.com/mstools/isotope.htm
  42. 42.
    Schröder D, Engeser M, Schwarz H, Rosenthal ECE, Döbler J, Sauer J (2006) Inorg Chem 45:6235–6245CrossRefPubMedGoogle Scholar
  43. 43.
    Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X, Asmis KR, Schwarz H (2013) J Am Chem Soc 135:3711–3721CrossRefPubMedGoogle Scholar
  44. 44.
    Rijs NJ, Weiske T, Schlangen M, Schwarz H (2014) Chem Phys Lett 608:408–424CrossRefGoogle Scholar
  45. 45.
    Rijs NJ, Weiske T, Schlangen M, Schwarz H (2015) Anal Chem 87:11601–11601CrossRefPubMedGoogle Scholar
  46. 46.
    Levsen K, Schwarz H (1983) Mass Spectrom Rev 2:77–148CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc Wallingford CTGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  49. 49.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  50. 50.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefPubMedGoogle Scholar
  51. 51.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chem Acc 77:123–141CrossRefGoogle Scholar
  52. 52.
    Huo C-F, Li Y-W, Wu G-S, Beller M, Jiao H (2002) J Phys Chem A 106:12161–12169CrossRefGoogle Scholar
  53. 53.
    Huo C-F, Zeng T, Li Y-W, Beller M, Jiao H (2005) Organometallics 24:6037–6042CrossRefGoogle Scholar
  54. 54.
    Rayón VM, Redondo P, Valdés H, Barrientos C, Largo A (2007) J Phys Chem A 111:6334–6344CrossRefPubMedGoogle Scholar
  55. 55.
    Yuan J, Wang S, Si Y, Yang B, Chen H (2014) Dalton Trans 43:5516–5525CrossRefPubMedGoogle Scholar
  56. 56.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  57. 57.
    Truhlar DG, Kilpatrick NJ, Garrett BC (1983) J Chem Phys 78:2438–2442CrossRefGoogle Scholar
  58. 58.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  59. 59.
    Foster J, Weinhold F (1980) J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  60. 60.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  61. 61.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  62. 62.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  63. 63.
    Cassady CJ, Freiser BS (1984) J Am Chem Soc 106:6176–6179CrossRefGoogle Scholar
  64. 64.
    Griffith WP (1962) Q Rev Chem Soc 16:188–207CrossRefGoogle Scholar
  65. 65.
    Naota T, Tannna A, Kamuro S, Hieda M, Ogata K, Murahashi S-I, Takaya H (2008) Chem Eur J 14:2482–2498CrossRefPubMedGoogle Scholar
  66. 66.
    Li J, Khairallah GN, Steinmetz V, Maitre P, O’Hair RAJ (2015) Dalton Trans 44:9230–9240CrossRefPubMedGoogle Scholar
  67. 67.
    Schneider F, Rabinovitch B (1962) J Am Chem Soc 84:4215–4230CrossRefGoogle Scholar
  68. 68.
    Van Dine GW, Hoffmann R (1968) J Am Chem Soc 90:3227–3232CrossRefGoogle Scholar
  69. 69.
    Alvarez S, Lopez C (1982) Inorg Chim Acta 64:L99-L100CrossRefGoogle Scholar
  70. 70.
    Fehlhammer WP, Fritz M (1993) Chem Rev 93:1243–1280CrossRefGoogle Scholar
  71. 71.
    Zhu N, Vahrenkamp H (1994) Angew Chem Int Ed 33:2090–2091CrossRefGoogle Scholar
  72. 72.
    Coppola A, Sánchez-Alonso P, Sucunza D, Burgos C, Alajarín R, Alvarez-Builla J, Mosquera MEG, Vaquero JJ (2013) Org Lett 15:3388–3391CrossRefPubMedGoogle Scholar
  73. 73.
    Murahashi S-I, Komiya N, Terai H, Nakae T (2003) J Am Chem Soc 125:15312–15313CrossRefPubMedGoogle Scholar
  74. 74.
    Murahashi S-I, Komiya N, Terai H (2005) Angew Chem Int Ed 44:6931–6933CrossRefGoogle Scholar
  75. 75.
    Murahashi S-I, Nakae T, Terai H, Komiya N (2008) J Am Chem Soc 130:11005–11012CrossRefPubMedGoogle Scholar
  76. 76.
    Han W, Ofial AR (2009) Chem Commun 0:5024–5026CrossRefGoogle Scholar
  77. 77.
    Singhal S, Jain SL, Sain B (2009) Chem Commun 0:2371–2372CrossRefGoogle Scholar
  78. 78.
    Anbarasan P, Neumann H, Beller M (2011) Angew Chem Int Ed 50:519–522CrossRefGoogle Scholar
  79. 79.
    Pellissier H (2015) Adv Synth Catal 357:857–882CrossRefGoogle Scholar
  80. 80.
    Zeng X-P, Cao Z-Y, Wang X, Chen L, Zhou F, Zhu F, Wang C-H, Zhou J (2016) J Am Chem Soc 138:416–425CrossRefPubMedGoogle Scholar
  81. 81.
    Jiang W, Yang J, Liu Y-Y, Song S-Y, Ma J-F (2017) Inorg Chem 56:3036–3043CrossRefPubMedGoogle Scholar
  82. 82.
    Song B, Xu B (2017) Chem Soc Rev 46:1103–1123CrossRefPubMedGoogle Scholar
  83. 83.
    Dunbar RC, Klippenstein SJ, Hrušák J, Stöckigt D, Schwarz H (1996) J Am Chem Soc 118:5277–5283CrossRefGoogle Scholar
  84. 84.
    Schröder D, Schwarz H (2008) Proc Natl Acad Sci USA 105:18114–18119CrossRefPubMedGoogle Scholar
  85. 85.
    Praneeth VKK, Ringenberg MR, Ward TR (2012) Angew Chem Int Ed 51:10228–10234CrossRefGoogle Scholar
  86. 86.
    Schröder D, Schwarz H (2005) Can J Chem 83:1936–1940CrossRefGoogle Scholar
  87. 87.
    Dossmann H, Afonso C, Lesage D, Tabet J-C, Uggerud E (2012) Angew Chem Int Ed 51:6938–6941CrossRefGoogle Scholar
  88. 88.
    Ryutaro T (1938) Bull Chem Soc Jpn 13:388–400CrossRefGoogle Scholar
  89. 89.
    Griffith JS, Orgel LE (1957) Q Rev Chem Soc 11:381–393CrossRefGoogle Scholar
  90. 90.
    Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Chem Rev 118:434–504CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für ChemieTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations