Topics in Catalysis

, Volume 61, Issue 5–6, pp 462–474 | Cite as

Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory

  • Hari Thirumalai
  • John R. KitchinEmail author
Original Paper


Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d-band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d-band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d-band centers and d-band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d-band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated.


Single atom alloy Density functional theory D-band model 



This work was funded in part by the (U.S.) Department of Energy (DOE) Office of Basic Energy Science Grant No. DE-SC0018187.


  1. 1.
    Bond GC (1987) Heterogeneous catalysis: principles and applications. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Hammer B, Nørskov JK (1997) Theory of adsorption and surface reactions. In: Chemisorption and reactivity on supported clusters and thin films. Springer Science + Business Media, pp 285–351Google Scholar
  3. 3.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15):156801CrossRefGoogle Scholar
  4. 4.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on \({\text{Pt}_{3}\text{Ni}}\)(111) via increased surface site availability. Science 315(5811):493–497CrossRefGoogle Scholar
  5. 5.
    Suo Y, Zhuang L, Juntao L (2007) First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew Chem 119(16):2920–2922CrossRefGoogle Scholar
  6. 6.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556CrossRefGoogle Scholar
  7. 7.
    Holewinski A, Idrobo J-C, Linic S (2014) High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction. Nat Chem 6(9):828–834CrossRefGoogle Scholar
  8. 8.
    Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3(11):810–815CrossRefGoogle Scholar
  9. 9.
    Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Nørskov JK (2008) Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science 320(5881):1320–1322CrossRefGoogle Scholar
  10. 10.
    Thomas JM, Raja R, Lewis DW (2005) Single-site heterogeneous catalysts. Angew Chem Int Ed 44(40):6456–6482CrossRefGoogle Scholar
  11. 11.
    Thomas JM (2014) The concept, reality and utility of single-site heterogeneous catalysts (SSHCS). Phys Chem Chem Phys 16(17):7647CrossRefGoogle Scholar
  12. 12.
    Boucher MB, Zugic B, Cladaras G, Kammert J, Marcinkowski MD, Lawton TJ, Sykes ECH, Flytzani-Stephanopoulos M (2013) Single atom alloy surface analogs in \({\text{Pd}_{0.18}\text{Cu}_{15}}\) nanoparticles for selective hydrogenation reactions. Phys Chem Chem Phys 15(29):12187CrossRefGoogle Scholar
  13. 13.
    Qiang F, Luo Y (2013) Active sites of Pd-doped flat and stepped Cu(111) surfaces for \({\text{H}_{2}}\) dissociation in heterogeneous catalytic hydrogenation. ACS Catal 3(6):1245–1252CrossRefGoogle Scholar
  14. 14.
    Tierney HL, Baber AE, Kitchin JR (2009) Hydrogen dissociation and spillover on individual isolated palladium atoms. Phys Rev Lett 103(24):246102CrossRefGoogle Scholar
  15. 15.
    Inderwildi OR, Jenkins SJ, King DA (2007) When adding an unreactive metal enhances catalytic activity: \({\text{NO}_{{\rm x}}}\) decomposition over silver-rhodium bimetallic surfaces. Surf Sci 601(17):L103–L108CrossRefGoogle Scholar
  16. 16.
    Lucci FR, Lawton TJ, Pronschinske A, Sykes ECH (2014) Atomic scale surface structure of Pt/Cu(111) surface alloys. J Phys Chem C 118(6):3015–3022CrossRefGoogle Scholar
  17. 17.
    Lucci FR, Marcinkowski MD, Lawton TJ, Sykes ECH (2015) H2 activation and spillover on catalytically relevant Pt-Cu single atom alloys. J Phys Chem C 119(43):24351–24357CrossRefGoogle Scholar
  18. 18.
    Lucci FR, Liu J, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat Commun 6:8550CrossRefGoogle Scholar
  19. 19.
    Aich P, Wei H, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R (2015) Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein. J Phys Chem C 119(32):18140–18148CrossRefGoogle Scholar
  20. 20.
    Lucci FR, Darby MT, Mattera MFG, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes ECH (2016) Controlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloys. J Phys Chem Lett 7(3):480–485CrossRefGoogle Scholar
  21. 21.
    Marcinkowski MD, Liu J, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Flytzani-Stephanopoulos M, Sykes ECH (2016) Selective formic acid dehydrogenation on Pt-Cu single atom alloys. ACS Catal 7(1):413–420CrossRefGoogle Scholar
  22. 22.
    Ruban AV, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990–16000CrossRefGoogle Scholar
  23. 23.
    Nilekar AU, Ruban AV, Mavrikakis M (2009) Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys. Surf Sci 603(1):91–96CrossRefGoogle Scholar
  24. 24.
    Han JW, Kitchin JR, Sholl DS (2009) Step decoration of chiral metal surfaces. J Chem Phys 130(12):124710CrossRefGoogle Scholar
  25. 25.
    Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of \({\text{Ag}_3{\rm Pd}}\)(111) in oxygen atmospheres. Phys Rev B 77(7):075437CrossRefGoogle Scholar
  26. 26.
    Menning CA, Chen JG (2008) Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures. J Chem Phys 128(16):164703CrossRefGoogle Scholar
  27. 27.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561CrossRefGoogle Scholar
  28. 28.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  30. 30.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  32. 32.
    Wyckoff RWG (1960) Crystal structures, vol 1. Interscience, New YorkGoogle Scholar
  33. 33.
    Monkhorst Hendrik J, Pack James D (1976) Special points for brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  34. 34.
    Phatak AA, Delgass WN, Ribeiro FH, Schneider WF (2009) Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. J Phys Chem C 113(17):7269–7276CrossRefGoogle Scholar
  35. 35.
    Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment—a python library for working with atoms. J Phys: Condens Matter 29(27):273002Google Scholar
  36. 36.
    Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123(22):224101CrossRefGoogle Scholar
  37. 37.
    Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Chemical bonding at surfaces and interfaces. Elsevier BV, Amsterdam, pp 255–321Google Scholar
  38. 38.
    Gajdoš M, Hafner J, Eichler A (2005) Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption. J Phys: Condens Matter 18(1):13–40Google Scholar
  39. 39.
    Gajdoš M, Hafner J, Eichler A (2005) Ab initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorption. J Phys: Condens Matter 18(1):41–54Google Scholar
  40. 40.
    Azizi Y, Petit C, Pitchon V (2008) Formation of polymer-grade ethylene by selective hydrogenation of acetylene over \({\text{Au/CeO}_{2}}\) catalyst. J Catal 256(2):338–344CrossRefGoogle Scholar
  41. 41.
    Gluhoi AC, Bakker JW, Nieuwenhuys BE (2010) Gold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticles. Catal Today 154(1–2):13–20CrossRefGoogle Scholar
  42. 42.
    Yan X, Wheeler J, Jang B, Lin W-Y, Zhao B (2014) Stable Au catalysts for selective hydrogenation of acetylene in ethylene. Appl Catal A 487:36–44CrossRefGoogle Scholar
  43. 43.
    Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem Eng Process 32(1):1–7CrossRefGoogle Scholar
  44. 44.
    Sheth PA, Neurock M, Smith CM (2003) A first-principles analysis of acetylene hydrogenation over Pd(111). J Phys Chem B 107(9):2009–2017CrossRefGoogle Scholar
  45. 45.
    Bolton W (1988) Alloying of metals. In: Engineering materials. Elsevier BV, Amsterdam, pp 39–51Google Scholar
  46. 46.
    Xin H, Linic S (2010) Communications: exceptions to the \(d\)-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal \(d\)-states. J Chem Phys 132(22):221101CrossRefGoogle Scholar
  47. 47.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105CrossRefGoogle Scholar
  48. 48.
    Fernández EM, Moses PG, Toftelund A, Hansen HA, Martínez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed 47(25):4683–4686CrossRefGoogle Scholar
  49. 49.
    Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK (2008) Using scaling relations to understand trends in the catalytic activity of transition metals. J Phys: Condens Matter 20(6):064239Google Scholar
  50. 50.
    Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P (2015) Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem 7(5):403–410CrossRefGoogle Scholar
  51. 51.
    Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112(12):4608–4617CrossRefGoogle Scholar
  52. 52.
    Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2010) Universal Brønsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactions. Catal Lett 141(3):370–373CrossRefGoogle Scholar
  53. 53.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81(13):2819–2822CrossRefGoogle Scholar
  54. 54.
    Krekelberg WP, Greeley J, Mavrikakis M (2004) Atomic and molecular adsorption on Ir(111). J Phys Chem B 108(3):987–994CrossRefGoogle Scholar
  55. 55.
    Ford DC, Ye X, Mavrikakis M (2005) Atomic and molecular adsorption on Pt(111). Surf Sci 587(3):159–174CrossRefGoogle Scholar
  56. 56.
    Popa C, Flipse CFJ, Jansen APJ, van Santen RA, Sautet P (2006) NO structures adsorbed on Rh(111): theoretical approach to high-coverage STM images. Phys Rev B 73(24):245408CrossRefGoogle Scholar
  57. 57.
    Popa C, van Bavel AP, van Santen RA, Flipse CFJ, Jansen APJ (2008) Density functional theory study of NO on the Rh(100) surface. Surf Sci 602(13):2189–2196CrossRefGoogle Scholar
  58. 58.
    Sheth PA, Neurock M, Smith CM (2005) First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures. J Phys Chem B 109(25):12449–12466CrossRefGoogle Scholar
  59. 59.
    Pei GX, Liu XY, Yang X, Zhang L, Wang A, Li L, Wang H, Wang X, Zhang T (2017) Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7(2):1491–1500CrossRefGoogle Scholar
  60. 60.
    Kruppe CM, Krooswyk JD, Trenary M (2017) Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloy. ACS Catal 7:8042–8049CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations