Stabilization of Oxidized Copper Nanoclusters in Confined Spaces

Original Paper


Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silica film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu2+ cations.

Graphical Abstract


Copper Nanocluster Silica In situ 



This research used resources of the Center for Functional Nanomaterials and beamline 23-ID-2 of NSLS-II, which are U.S. DOE Office of Science Facilities, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Supplementary material

11244_2017_879_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5398 KB)


  1. 1.
    Rodriguez JA, Liu P, Wang X, Wen W, Hanson J, Hrbek J, Perez M, Evans J (2009) Catal Today 143(1–2):45–50CrossRefGoogle Scholar
  2. 2.
    Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130(4):1402–1414CrossRefGoogle Scholar
  3. 3.
    Klier K (1982) Adv Catal 31:243–313Google Scholar
  4. 4.
    Wang W, Wang SP, Ma XB, Gong JL (2011) Chem Soc Rev 40(7):3703–3727CrossRefGoogle Scholar
  5. 5.
    Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357(6354):898CrossRefGoogle Scholar
  6. 6.
    Baber AE, Yang XF, Kim HY, Mudiyanselage K, Soldemo M, Weissenrieder J, Senanayake SD, Al-Mahboob A, Sadowski JT, Evans J, Rodriguez JA, Liu P, Hoffmann FM, Chen JGG, Stacchiola DJ (2014) Angew Chem Int Ed 53(21):5336–5340CrossRefGoogle Scholar
  7. 7.
    Eren B, Heine C, Bluhm H, Somorjai GA, Salmeron M (2015) J Am Chem Soc 137(34):11186–11190CrossRefGoogle Scholar
  8. 8.
    Xu F, Mudiyanselage K, Baber AE, Soldemo M, Weissenrieder J, White MG, Stacchiola DJ (2014) J Phys Chem C 118(29):15902–15909CrossRefGoogle Scholar
  9. 9.
    Royer S, Duprez D (2011) ChemCatChem 3(1):24–65CrossRefGoogle Scholar
  10. 10.
    Stacchiola DJ (2015) Acc Chem Res 48(7):2151–2158CrossRefGoogle Scholar
  11. 11.
    Therrien AJ, Zhang RQ, Lucci FR, Marcinkowski MD, Hensley A, McEwen JS, Sykes ECH (2016) J Phys Chem C 120(20):10879–10886CrossRefGoogle Scholar
  12. 12.
    Jiang P, Prendergast D, Borondics F, Porsgaard S, Giovanetti L, Pach E, Newberg J, Bluhm H, Besenbacher F, Salmeron M (2013) J Chem Phys 138(2):024704CrossRefGoogle Scholar
  13. 13.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund HJ (2012) Angew Chem Int Ed 51(24):6005–6008CrossRefGoogle Scholar
  14. 14.
    Büchner C, Lichtenstein L, Stuckenholz S, Heyde M, Ringleb F, Sterrer M, Kaden WE, Giordano L, Pacchioni G, Freund H-J (2014) J Phys Chem C 118(36):20959–20969CrossRefGoogle Scholar
  15. 15.
    Kaden WE, Büchner C, Lichtenstein L, Stuckenholz S, Ringleb F, Heyde M, Sterrer M, Freund H-J, Giordano L, Pacchioni G (2014) Phys Rev B 89(11):115436CrossRefGoogle Scholar
  16. 16.
    Baron M, Stacchiola D, Ulrich S, Nilius N, Shaikhutdinov S, Freund HJ, Martinez U, Giordano L, Pacchioni G (2008) J Phys Chem C 112(9):3405–3409CrossRefGoogle Scholar
  17. 17.
    Zhong J-Q, Wang M, Akter N, Kestell JD, Boscoboinik AM, Kim T, Stacchiola DJ, Lu D, Boscoboinik JA (2017) Nat Commun 8:16118CrossRefGoogle Scholar
  18. 18.
    Zhong J-Q, Kestell J, Waluyo I, Wilkins S, Mazzoli C, Barbour A, Kaznatcheev K, Shete M, Tsapatsis M, Boscoboinik JA (2016) J Phys Chem C 120(15):8240–8245CrossRefGoogle Scholar
  19. 19.
    Schlexer P, Pacchioni G, Włodarczyk R, Sauer J (2016) Surf Sci 648:2–9CrossRefGoogle Scholar
  20. 20.
    Yang B, Kaden WE, Yu X, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Włodarczyk R, Sierka M (2012) Phys Chem Chem Phys 14(32):11344–11351CrossRefGoogle Scholar
  21. 21.
    Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  23. 23.
    Berland K, Hyldgaard P (2014) Phys Rev B 89(3):035412CrossRefGoogle Scholar
  24. 24.
    Bjorkman T (2014) J Chem Phys 141(7):074708CrossRefGoogle Scholar
  25. 25.
    Grant J, Haas T (1970) Surf Sci 21(1):76–85CrossRefGoogle Scholar
  26. 26.
    Büchner C, Wang Z-J, Burson KM, Willinger M-G, Heyde M, Schlögl R, Freund H-J (2016) ACS Nano 10(8):7982–7989CrossRefGoogle Scholar
  27. 27.
    Emmez E, Yang B, Shaikhutdinov S, Freund H-J (2014) J Phys Chem C 118(50):29034–29042CrossRefGoogle Scholar
  28. 28.
    Starr DE, Bluhm H (2013) Surf Sci 608:241–248CrossRefGoogle Scholar
  29. 29.
    Hollins P, Pritchard J (1983) Surf Sci 134(1):91–108CrossRefGoogle Scholar
  30. 30.
    Xu X, Vesecky S, He JW, Goodman D (1993) J Vac Sci Technol A 11(4):1930–1935CrossRefGoogle Scholar
  31. 31.
    Kaya S, Baron M, Stacchiola D, Weissenrieder J, Shaikhutdinov S, Todorova TK, Sierka M, Sauer J, Freund HJ (2007) Surf Sci 601(21):4849–4861CrossRefGoogle Scholar
  32. 32.
    Yang B, Kaden WE, Yu X, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Wlodarczyk R, Sierka M, Sauer J, Shaikhutdinov S, Freund H-J (2012) Phys Chem Chem Phys 14(32):11344–11351CrossRefGoogle Scholar
  33. 33.
    Włodarczyk R, Sierka M, Sauer J, Löffler D, Uhlrich JJ, Yu X, Yang B, Groot IMN, Shaikhutdinov S, Freund HJ (2012) Phys Rev B 85(8):085403CrossRefGoogle Scholar
  34. 34.
    Wang M, Zhong J-Q, Kestell J, Waluyo I, Stacchiola DJ, Boscoboinik JA, Lu D (2017) Top Catal 60(6–7):481–491Google Scholar
  35. 35.
    Tahir D, Tougaard S (2012) J Phys Condens Matter 24(17):175002CrossRefGoogle Scholar
  36. 36.
    Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36(3):354–360CrossRefGoogle Scholar
  37. 37.
    Raebiger H, Lany S, Zunger A (2008) Nature 453(7196):763CrossRefGoogle Scholar
  38. 38.
    Wolter H, Meinel K, Ammer C, Wandelt K, Neddermeyer H (1999) J Phys: Condens Matter 11(1):19Google Scholar
  39. 39.
    Pfnür H, Held G, Lindroos M, Menzel D (1989) Surf Sci 220(1):43–58CrossRefGoogle Scholar
  40. 40.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113(22):9901–9904CrossRefGoogle Scholar
  41. 41.
    Lu Y, Sun Q, Jia Y, He P (2008) Surf Sci 602(14):2502–2507CrossRefGoogle Scholar
  42. 42.
    Ma X, Genest A, Spanu L, Rösch N (2015) Comput Theor Chem 1069:147–154CrossRefGoogle Scholar
  43. 43.
    Lide DR (2000) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  44. 44.
    Kresse G, Gil A, Sautet P (2003) Phys Rev B 68(7):073401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  2. 2.Materials Science and Chemical Engineering DepartmentStony Brook UniversityStony BrookUSA
  3. 3.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations