Topics in Catalysis

, Volume 61, Issue 1–2, pp 136–141 | Cite as

Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis

  • Shun Hayashi
  • Ryo Ishida
  • Shingo Hasegawa
  • Seiji Yamazoe
  • Tatsuya Tsukuda
Original Paper
  • 446 Downloads

Abstract

It is known that small gold clusters (average diameter: ~ 1.2 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibit size-specific catalysis in aerobic oxidation reactions. A recent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) study of Au:PVP revealed that Au clusters with the magic sizes of 34 and 43 were preferentially produced. Here, we reported how the doping of palladium (Pd) into Au:PVP affected the catalytic performance. MALDI-MS analysis of Pd-doped Au:PVP showed that a single Pd atom was selectively doped by co-reduction of Au and Pd precursor ions and that PdAu33 and PdAu43 were produced as the dominant species. Extended X-ray absorption fine structure (EXAFS) analysis indicated that a Pd atom was located at the exposed surface of the Au:PVP clusters. It was found that single Pd atom doping enhanced the catalytic activity for aerobic oxidation of benzyl alcohol and provided hydrogenation catalysis in a chemoselective manner to the C=C bonds over the C=O bonds.

Keywords

Gold Palladium Poly(N-vinyl-2-pyrrolidone) Mass spectrometry Hydrogenation 

Notes

Acknowledgements

This research was financially supported by the Elements Strategy Initiative for Catalysts and Batteries (ESICB) and by Grants-in-Aid for Scientific Research (Nos. 17H01182 and 26248003) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and CREST (JPMJCR14L4), Japan Science and Technology Agency. The synchrotron radiation experiments were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) as 2017A0910 and 2017A1492.

Supplementary material

11244_2017_876_MOESM1_ESM.docx (286 kb)
Supplementary material 1 (DOCX 287 KB)

References

  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  2. 2.
    Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Adv Catal 55:1–126Google Scholar
  3. 3.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736–739CrossRefGoogle Scholar
  4. 4.
    Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144–10147CrossRefGoogle Scholar
  5. 5.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375CrossRefGoogle Scholar
  6. 6.
    Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528–532CrossRefGoogle Scholar
  7. 7.
    Tsukuda T, Tsunoyama H, Sakurai H (2011) Chem Asian J 6:736–748CrossRefGoogle Scholar
  8. 8.
    Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) J Am Chem Soc 131:7086–7093CrossRefGoogle Scholar
  9. 9.
    Okumura M, Kitagawa Y, Kawakami T, Haruta M (2008) Chem Phys Lett 459:133–136CrossRefGoogle Scholar
  10. 10.
    Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499–7505CrossRefGoogle Scholar
  11. 11.
    Pal R, Wang LM, Pei Y, Wang LS, Zeng XC (2012) J Am Chem Soc 134:9438–9445CrossRefGoogle Scholar
  12. 12.
    Tsunoyama H, Ichikuni N, Tsukuda T (2008) Langmuir 24:11327–11330CrossRefGoogle Scholar
  13. 13.
    Tsunoyama H, Tsukuda T (2009) J Am Chem Soc 131:18216–18217CrossRefGoogle Scholar
  14. 14.
    Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141–2143CrossRefGoogle Scholar
  15. 15.
    Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319–3329CrossRefGoogle Scholar
  16. 16.
    de Heer WA (1993) Rev Mod Phys 65:611–676CrossRefGoogle Scholar
  17. 17.
    Ishida R, Arii S, Kurashige W, Yamazoe S, Koyasu K, Negishi Y, Tsukuda T (2016) Chin J Catal 37:1656–1661CrossRefGoogle Scholar
  18. 18.
    Lechtken A, Schooss D, Stairs JR, Blom MN, Furche F, Morgner N, Kostko O, von Issendorff B, Kappes MM (2007) Angew Chem Int Ed 46:2944–2948CrossRefGoogle Scholar
  19. 19.
    Gu X, Bulusu S, Li X, Zeng XC, Li J, Gong XG, Wang LS (2007) J Phys Chem C 111:8228–8232CrossRefGoogle Scholar
  20. 20.
    Pande S, Huang W, Shao N, Wang LM, Khetrapal N, Mei WN, Jian T, Wang LS, Zeng XC (2016) ACS Nano 10:10013–10022CrossRefGoogle Scholar
  21. 21.
    Chaki NK, Tsunoyama H, Negishi Y, Sakurai H, Tsukuda T (2007) J Phys Chem C 111:4885–4888CrossRefGoogle Scholar
  22. 22.
    Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300CrossRefGoogle Scholar
  23. 23.
    Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) ACS Catal 2:1519–1523CrossRefGoogle Scholar
  24. 24.
    Yamazoe S, Yoskamtorn T, Takano S, Yadnum S, Limtrakul J, Tsukuda T (2016) Chem Rec 16:2338–2348CrossRefGoogle Scholar
  25. 25.
    Bruma A, Negreiros FR, Tsukuda T, Johnson RL, Fortunelli A, Li ZY (2013) Nanoscale 5:9620–9625CrossRefGoogle Scholar
  26. 26.
    Yamazoe S, Koyasu K, Tsukuda T (2014) Acc Chem Res 47:816–824CrossRefGoogle Scholar
  27. 27.
    Yudha SS, Dhital RN, Sakurai H (2011) Tetrahedron Lett 52:2633–2637CrossRefGoogle Scholar
  28. 28.
    Nishimura S, Yakita Y, Katayama M, Higashimine K, Ebitani K (2013) Catal Sci Technol 3:351–359CrossRefGoogle Scholar
  29. 29.
    Hayashi N, Sakai Y, Tsunoyama H, Nakajima A (2014) Langmuir 30:10539–10547CrossRefGoogle Scholar
  30. 30.
    Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K (2010) Phys Chem Chem Phys 12:6219 – 6225CrossRefGoogle Scholar
  31. 31.
    Negishi Y, Kurashige W, Kobayashi Y, Yamazoe S, Kojima N, Seto M, Tsukuda T (2013) J Phys Chem Lett 4:3579–3583CrossRefGoogle Scholar
  32. 32.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576CrossRefGoogle Scholar
  33. 33.
    Ito LN, Johnson BJ, Mueting AM, Pignolet LH (1989) Inorg Chem 26:2026–2028CrossRefGoogle Scholar
  34. 34.
    Jiang DE, Dai S (2009) Inorg Chem 48:2720–2722CrossRefGoogle Scholar
  35. 35.
    Kacprzak KA, Lehtovaara L, Akola J, Lopez-Acevedo O, Häkkinen H (2009) Phys Chem Chem Phys 11:7123–7129CrossRefGoogle Scholar
  36. 36.
    Walter M, Moseler M (2009) J Phys Chem C 113:15834–15837CrossRefGoogle Scholar
  37. 37.
    Christensen SL, MacDonald MA, Chatt A, Zhang P (2012) J Phys Chem C 116:26932–26937CrossRefGoogle Scholar
  38. 38.
    Tofanelli MA, Ni TW, Phillips BD, Ackerson CJ (2016) Inorg Chem 55:999–1001CrossRefGoogle Scholar
  39. 39.
    Miura H, Endo K, Ogawa R, Shishido T (2017) ACS Catal 7:1543–1553CrossRefGoogle Scholar
  40. 40.
    Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Nat Mater 11:49–52CrossRefGoogle Scholar
  41. 41.
    McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306CrossRefGoogle Scholar
  42. 42.
    Lucci FR, Darby MT, Mattera MFG, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes CH (2016) J Phys Chem Lett 7:480–485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shun Hayashi
    • 1
  • Ryo Ishida
    • 1
  • Shingo Hasegawa
    • 1
  • Seiji Yamazoe
    • 1
    • 2
    • 3
  • Tatsuya Tsukuda
    • 1
    • 2
  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  2. 2.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan
  3. 3.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology AgencyTokyoJapan

Personalised recommendations