Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Morphological Dependence of the Thermal and Photochemical Reactions of Acetaldehyde on Anatase TiO2 Nanocrystals

  • 313 Accesses

  • 4 Citations

Abstract

Size and shape selected anatase TiO2 (A-TiO2) nanocrystals that had either a truncated bipyramidal morphology exposing predominantly (101) facets, or a platelet morphology exposing a high fraction of (001) facets and ranging in size from 10 to 25 nm were used to study the influence of crystallite shape and size on the thermal and photocatalytic reactions of acetaldehyde on TiO2 using temperature-programmed desorption in ultra-high vacuum. The primary thermal reaction pathways on the bipyramidal and platelet nanocrystals were aldol condensation to produce crotonaldehyde and reductive coupling to butene. The platelet morphology, however, exhibited higher thermal activity, which was attributed to the higher fraction of exposed (001) facets. For both morphologies crystallite size was found to be important with smaller nanocrystals favoring butene and larger ones favoring crotonaldehyde. The dependence of the selectivity on crystallite size can be attributed to the populations of planar and edge sites exposed by the nanocrystals. The photocatalytic activity of the nanocrystals was also found to vary with size and shape with the platelets having higher activity for acetaldehyde photo-oxidation than the bipyramidal morphology. For both morphologies, photoactivity also increased as the size of the nanocrystals increased.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kim KS, Barteau MA (1989) Reactions of methanol on TiO2(001) single-crystal surfaces. Surf Sci 223:13–32

  2. 2.

    Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic-acids on TiO2(001) single-crystal surfaces. J Catal 125:353–375

  3. 3.

    Kim KS, Barteau MA (1990) Structural dependence of the selectivity of formic-acid decomposition on faceted TiO2 (001) surfaces. Langmuir 6:1485–1488

  4. 4.

    Idriss H, Pierce K, Barteau MA (1991) Carbonyl coupling on the TiO2(001) surface. J Am Chem Soc 113:715–716

  5. 5.

    Idriss H, Kim KS, Barteau MA (1993) Carbon carbon bond formation via aldolization of acetaldehyde on single-crystal and polycrystalline TiO2 surfaces. J Catal 139:119–133

  6. 6.

    Idriss H, Pierce KG, Barteau MA (1994) Synthesis of stilbene from benzaldehyde by reductive coupling on TiO2(001) surfaces. J Am Chem Soc 116:3063–3074

  7. 7.

    Idriss H, Barteau MA (1994) Reactions of P-benzoquinone on TiO2(001) single-crystal surfaces: oligomerization and polymerization by reductive coupling. Langmuir 10:3693–3700

  8. 8.

    Pierce KG, Barteau MA (1995) Ketone coupling on reduced TiO2 (001) surfaces: evidence of pinacol formation. J Org Chem 60:2405–2410

  9. 9.

    Idriss H, Barteau MA (1996) Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal Lett 40:147–153

  10. 10.

    Epling WS, Peden C.H.F., Henderson MA, Diebold U (1998) Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf Sci, 412–413:333–343

  11. 11.

    Henderson MA, Otero-Tapia S, Castro ME (1999) The chemistry of methanol on the surface: the TiO2 (110) influence of vacancies and coadsorbed species. Faraday Discuss 114:313–329

  12. 12.

    Tanner RE, Liang Y, Altman EI (2002) Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf Sci 506:251–271

  13. 13.

    Zehr RT, Henderson MA (2008) Acetaldehyde photochemistry on TiO2(110). Surf Sci 602:2238–2249

  14. 14.

    Tao JG, Luttrell T, Bylsma J, Batzill M (2011) Adsorption of acetic acid on rutile TiO2(110) vs (011)-2 × 1 Surfaces. J Phys Chem C 115:3434–3442

  15. 15.

    Katsiev K, Harrison G, Alghamdi H, Alsalik Y, Wilson A, Thornton G, Idriss H (2017) Mechanism of ethanol photooxidation on single-crystal anatase TiO2(101). J Phys Chem C 121:2940–2950

  16. 16.

    Liang Y, Gan SP, Chambers SA, Altman EI (2001) Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. Phys Rev B 63:235402

  17. 17.

    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

  18. 18.

    Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540

  19. 19.

    Truong QD, Hoa HT, Vo D.V.N., Le TS (2017) Controlling the shape of anatase nanocrystals for enhanced photocatalytic reduction of CO2 to methanol. New J Chem 41:5660–5668

  20. 20.

    Liu N, Chang Y, Feng YL, Cheng Y, Sun XJ, Jian H, Feng YQ, Li X, Zhang HY (2017) {101}-{001} Surface heterojunction-enhanced antibacterial activity of titanium dioxide nanocrystals under sunlight irradiation. ACS Appl Mater Interface 9:5907–5915

  21. 21.

    Zheng ZK, Huang BB, Lu JB, Qin XY, Zhang XY, Dai Y (2011) Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem-Eur J 17:15032–15038

  22. 22.

    Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136:8839–8842

  23. 23.

    Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26:1167–1170

  24. 24.

    Liu LJ, Jiang YQ, Zhao HL, Chen JT, Cheng JL, Yang KS, Li Y (2016) Engineering Coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal 6:1097–1108

  25. 25.

    Bennett DA, Cargnello M, Diroll BT, Murray CB, Vohs JM (2016) Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2. Surf Sci 654:1–7

  26. 26.

    Liao DL, Liao BQ (2007) Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. J Photochem Photobiol A 187:363–369

  27. 27.

    Zhao XW, Jin WZ, Cai JG, Ye JF, Li ZH, Ma YR, Xie JL, Qi LM (2011) Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv Funct Mater 21:3554–3563

  28. 28.

    D’Arienzo M, Carbajo J, Bahamonde A, Crippa M, Polizzi S, Scotti R, Wahba L, Morazzoni F (2011) Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. J Am Chem Soc 133:17652–17661

  29. 29.

    Xie XW, Shen WJ (2009) Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale 1:50–60

  30. 30.

    Crampton AS, Cai L, Janvelyan N, Zheng X, Friend CM (2017) Methanol photo-oxidation on rutile TiO2 nanowires: probing reaction pathways on complex materials. J Phys Chem C 121:9910–9919

  31. 31.

    Cargnello M, Montini T, Smolin SY, Priebe JB, Jaen J.J.D., Doan-Nguyen V.V.T., McKay IS, Schwalbe JA, Pohl MM, Gordon TR, Lu YP, Baxter JB, Bruckner A, Fornasiero P, Murray CB (2016) Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc Natl Acad Sci USA 113:3966–3971

  32. 32.

    Wu NQ, Wang J, Tafen D, Wang H, Zheng JG, Lewis JP, Liu XG, Leonard SS, Manivannan A (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132:6679–6685

  33. 33.

    Bae E, Murakami N, Ohno T (2009) Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J Mol Catal A 300:72–79

  34. 34.

    Bennett DA, Cargnello M, Gordon TR, Murray CB, Vohs JM (2015) Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2 thin films. Phys Chem Chem Phys 17:17190–17201

  35. 35.

    Pepin PA, Diroll BT, Choi HJ, Murray CB, Vohs JM (2017) Thermal and photochemical reactions of methanol, acetaldehyde, and acetic acid on brookite TiO2 nanorods. J Phys Chem C 121:11488–11498

  36. 36.

    Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751–6761

  37. 37.

    Burdett JK, Hughbanks T, Miller GJ, Richardson JW, Smith JV (1987) Structural electronic relationships in inorganic solids: powder neutron-diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295-K. J Am Chem Soc 109:3639–3646

  38. 38.

    Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409

  39. 39.

    Rekoske JE, Barteau MA (1999) Competition between acetaldehyde and crotonaldehyde during adsorption and reaction on anatase and rutile titanium dioxide. Langmuir 15:2061–2070

  40. 40.

    Luo SC, Falconer JL (1999) Acetone and acetaldehyde oligomerization on TiO2 surfaces. J Catal 185:393–407

  41. 41.

    Luo SC, Falconer JL (1999) Aldol condensation of acetaldehyde to form high molecular weight compounds on TiO2. Catal Lett 57:89–93

  42. 42.

    Rasko J, Kiss J (2005) Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl Catal A 287:252–260

  43. 43.

    Geng ZH, Chen X, Yang WS, Guo Q, Dai DX, Yang XM (2016) Photoinduced carbonyl coupling of aldehydes on anatase TiO2(101). J Phys Chem C 120:9897–9903

  44. 44.

    Kim H, Choi W (2007) Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Appl Catal B 69:127–132

  45. 45.

    Kim S, Lim SK (2008) Preparation of TiO2-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde. Appl Catal B 84:16–20

  46. 46.

    Muggli DS, McCue JT, Falconer JL (1998) Mechanism of the photocatalytic oxidation of ethanol on TiO2. J Catal 173:470–483

  47. 47.

    Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562

  48. 48.

    Herman GS, Sievers MR, Gao Y (2000) Structure determination of the two-domain (1 × 4) anatase TiO2(001) surface. Phys Rev Lett 84:3354–3357

  49. 49.

    Singh M, Zhou N, Paul DK, Klabunde KJ (2008) IR spectral evidence of aldol condensation: acetaldehyde adsorption over TiO2 surface. J Catal 260:371–379

  50. 50.

    Mcmurry JE (1989) Carbonyl-coupling reactions using low-valent titanium. Chem Rev 89:1513–1524

  51. 51.

    Rekoske JE, Barteau MA (1995) In-Situ studies of carbonyl coupling: comparisons of liquid-solid and gas-solid reactions with reduced titanium reagents. Ind Eng Chem Res 34:2931–2939

  52. 52.

    He YB, Dulub O, Cheng HZ, Selloni A, Diebold U (2009) Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys Rev Lett 102:106105

  53. 53.

    Liu C, Han XG, Xie SF, Kuang Q, Wang X, Jin MS, Xie ZX, Zheng LS (2013) Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes. Chem-Asian J 8:282–289

  54. 54.

    Jing LQ, Xin BF, Yuan FL, Xue LP, Wang BQ, Fu HG (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B 110:17860–17865

Download references

Acknowledgements

Funding for this study was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. DEFG02-04ER15605.

Author information

Correspondence to Paul A. Pepin or John M. Vohs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pepin, P.A., Diroll, B.T., Murray, C.B. et al. Morphological Dependence of the Thermal and Photochemical Reactions of Acetaldehyde on Anatase TiO2 Nanocrystals. Top Catal 61, 365–378 (2018). https://doi.org/10.1007/s11244-017-0871-4

Download citation

Keywords

  • Anatase
  • TiO2
  • TPD
  • UHV
  • Acetaldehyde
  • Photo-oxidation