Advertisement

Topics in Catalysis

, Volume 60, Issue 17–18, pp 1387–1400 | Cite as

Preparation of Novel Fe Catalysts from Industrial By-Products: Catalytic Wet Peroxide Oxidation of Bisphenol A

  • Riikka Juhola
  • Anne HeponiemiEmail author
  • Sari Tuomikoski
  • Tao Hu
  • Tuomas Vielma
  • Ulla Lassi
Original Paper

Abstract

Biomass-based carbon residue (CR) was used as a support material for iron catalysts to degrade bisphenol A (BPA) in catalytic wet peroxide oxidation (CWPO). According to the results, CR and Fe/CR catalysts are suitable materials for CWPO. The Fe catalysts were prepared by either incipient wet impregnation or wet impregnation methods with an iron chloride solution. The specific surface area of the prepared catalysts was 17–91 m2 g−1, and it remained the same after the oxidation experiments. The CWPO experiments were carried out batch-wise at c(BPA) =60 mg L−1, c(H2O2) =1.5 g L−1, c(catalyst) =1–2 g L−1, T = 50 °C and at the initial pH. The 5.0Fe/CR catalyst was found to be active with BPA removal and total organic carbon (TOC) conversion of 83 and 64%, respectively, and was the most stable catalyst with negligible iron leaching during the 3 h experiment.

Keywords

Bisphenol A Catalytic wet peroxide oxidation (CWPO) Fe-catalyst Biomass 

Notes

Acknowledgements

The authors gratefully acknowledge the Academy of Finland for providing research funding, AOPI project (263397) within the research program for Sustainable Governance of Aquatic Resources (AKVA). The Tauno Tönning Foundation is gratefully acknowledged for its financial support. The authors would like to thank PhD Henrik Romar for the BET, pore size and pore volume measurements and Jaakko Pulkkinen (AAS) and Tuomas Vähätiitto (TOC). We also thank the staff at TraceElement Laboratory at the University of Oulu for their assistance with the elementary analysis. Lotta Hekkala and Aleksanteri Nikula are acknowledged for their support during the laboratory work.

References

  1. 1.
    Selvaraj KK, Shanmugam G, Sampath S, Joakim Larsson DG, Ramaswamy BR (2014) Ecotoxicol Environ Saf 99:13–20CrossRefGoogle Scholar
  2. 2.
    Belfroid A, Van Velzen M, Van der Horst B, Vethaak D (2002) Chemosphere 49:97–103CrossRefGoogle Scholar
  3. 3.
    Välitalo P, Perkola N, Seiler T, Sillanpää M, Kuckelkorn J, Mikola A, Hollert H, Schultz E (2016) Water Res 88:740–749CrossRefGoogle Scholar
  4. 4.
    Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT (2006) Chemosphere 65:1265–1280CrossRefGoogle Scholar
  5. 5.
    Nelson J, Bishay F, van Roodselaar A, Ikonomou M, Law FCP (2007) Sci Total Environ 374:80–90CrossRefGoogle Scholar
  6. 6.
    Jurado A, Vàzquez-Suñé E, Carrera J, López de Alda M, Pujades E, Barceló D (2012) Sci Total Environ 440:82–94CrossRefGoogle Scholar
  7. 7.
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) Sci Total Environ 473–474:619–641CrossRefGoogle Scholar
  8. 8.
    Gültekin I, Ince NH (2007) J Environ Manage 85:816–832CrossRefGoogle Scholar
  9. 9.
    United States Environmental Protection Agency. (1998). Endocrine disruptor testing and screening advisory committee (EDSTAC). Final report. washington, DC, USGoogle Scholar
  10. 10.
    Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Chemosphere 42:415–418CrossRefGoogle Scholar
  11. 11.
    Ying G, Kookana RS, Kumar A, Mortimer M (2009) Sci Total Environ 407:5147–5155CrossRefGoogle Scholar
  12. 12.
    PlasticsEurope (2007) Applications of bisphenol A. Polycarbonate/bisphenol A (BPA) groups of industry association PlasticsEurope. http://www.bisphenol-a-europe.org/uploads/applications%20of%20BPA%20Sept%2008.pdf
  13. 13.
    Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) Chemosphere 36:2149–2173CrossRefGoogle Scholar
  14. 14.
    Seachrist DD, Bonk KW, Ho S, Prins GS, Soto AM, Keri RA (2016) Reprod Toxicol 59:167–182CrossRefGoogle Scholar
  15. 15.
    Levy G, Lutz I, Krüger A, Kloas W (2004) Environ Res 94:102–111CrossRefGoogle Scholar
  16. 16.
    Markey CM, Coombs MA, Sonnenschein C, Soto AM (2003) Evol Dev 5:67–75CrossRefGoogle Scholar
  17. 17.
    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) Reprod Toxicol 24:199–224CrossRefGoogle Scholar
  18. 18.
    Li G, Lu Y, Lu C, Zhu M, Zhai C, Du Y, Yang P (2015) J Hazard Mater 294:201–208CrossRefGoogle Scholar
  19. 19.
    Ioan I, Wilson S, Lundanes E, Neculai A (2007) J Hazard Mater 142:555–558CrossRefGoogle Scholar
  20. 20.
    Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K (2004) J Photochem Photobiol A Chem 162:297–305CrossRefGoogle Scholar
  21. 21.
    Poerschmann J, Trommler U, Górecki T (2010) Chemosphere 79:975–986CrossRefGoogle Scholar
  22. 22.
    Kwon J, Lee B (2015) Chem Eng Res Design 104:519–529CrossRefGoogle Scholar
  23. 23.
    Cesaro A, Naddeao V, Belgiorno V (2013) J Bioremed Biodeg 4:208Google Scholar
  24. 24.
    Neyens E, Baeyens J (2003) J Hazard Mater 98:33–50CrossRefGoogle Scholar
  25. 25.
    Huling SG, Kan E, Wingo C (2009) Appl Catal B Environ 89:651–658CrossRefGoogle Scholar
  26. 26.
    Perathoner S, Centi G (2005) Top Catal 33:207–224CrossRefGoogle Scholar
  27. 27.
    Li J, Gu J, Li H, Liang Y, Hao Y, Sun X, Wang L (2010) Microporous Mesoporous Mater 128:144–149CrossRefGoogle Scholar
  28. 28.
    Gomes HT, Miranda SM, Sampaio MJ, Silva AMT, Faria JL (2010) Catal Today 151:153–158CrossRefGoogle Scholar
  29. 29.
    Gomes HT, Miranda SM, Sampaio MJ, Figueiredo JL, Silva AMT, Faria JL (2011) Appl Catal B Environ 106:390–397CrossRefGoogle Scholar
  30. 30.
    Centi G, Perathoner S, Torre T, Verduna MG (2000) Catal Today 55:61–69CrossRefGoogle Scholar
  31. 31.
    Melero JA, Martínez F, Botas JA, Molina R, Pariente MI (2009) Water Res 43:4010–4018CrossRefGoogle Scholar
  32. 32.
    Fenton HJH (1894) J Chem Soc 65:899–910CrossRefGoogle Scholar
  33. 33.
    Pignatello JJ, Oliveros E, MacKay A (2006) Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  34. 34.
    Zazo JA, Casas JA, Mohedano AF, Rodríguez JJ (2006) Appl Catal B Environ 65:261–268CrossRefGoogle Scholar
  35. 35.
    Messele SA, Soares OSGP, Órfão JJM, Stüber F, Bengoa C, Fortuny A, Fabregat A, Font J (2014) Appl Catal B Environ 154–155:329–338CrossRefGoogle Scholar
  36. 36.
    Navalon S, Alvaro M, Garcia H (2010) Appl Catal B Environ 99:1–26CrossRefGoogle Scholar
  37. 37.
    Zhang X, Ding Y, Tang H, Han X, Zhu L, Wang N (2014) Chem Eng J 236:251–262CrossRefGoogle Scholar
  38. 38.
    Ramirez JH, Costa CA, Madeira LM, Mata G, Vicente MA, Rojas-Cervantes ML, López-Peinado AJ, Martín-Aranda RM (2007) Appl Catal B 71:44–56CrossRefGoogle Scholar
  39. 39.
    Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2003) J Mol Catal A Chem 193:109–120CrossRefGoogle Scholar
  40. 40.
    Rodríguez-Reinoso F (1998) Carbon 36:159–175CrossRefGoogle Scholar
  41. 41.
    Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodríguez JJ (2009) Appl Catal B Environ 86:69–77CrossRefGoogle Scholar
  42. 42.
    Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) Environ Int 75:33–51CrossRefGoogle Scholar
  43. 43.
    Bautista-Toledo I, Ferro-García MA, Rivera-Utrilla J, Moreno-Castilla C, Fernández FJV (2005) Environ Sci Technol 39:6246–6250CrossRefGoogle Scholar
  44. 44.
    Chang Q, Lin W, Ying W (2010) J Hazard Mater 184:515–522CrossRefGoogle Scholar
  45. 45.
    Santos VP, Pereira MFR, Faria PCC, Órfão JJM (2009) J Hazard Mater 162:736–742CrossRefGoogle Scholar
  46. 46.
    Oliveira LCA, Silva CN, Yoshida MI, Lago RM (2004) Carbon 42:2279–2284CrossRefGoogle Scholar
  47. 47.
    The European parliament and the council of the European Union (2008). Directive 2008/98/ec., 2008. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1472559001854&uri=CELEX:32008L0098
  48. 48.
    Martínez ML, Torres MM, Guzmán CA, Maestri DM (2006) Ind Crops Prod 23:23–28CrossRefGoogle Scholar
  49. 49.
    Jagtoyen M, Derbyshire F (1998) Carbon 36:1085–1097CrossRefGoogle Scholar
  50. 50.
    Tancredi N, Medero N, Möller F, Píriz J, Plada C, Cordero T 2004 J Colloid Interface Sci 279:357–363CrossRefGoogle Scholar
  51. 51.
    Ribeiro RS, Silva AMT, Figueiredo JL, Faria JL, Gomes HT (2016) Appl Catal B 187:428–460CrossRefGoogle Scholar
  52. 52.
    Choi J, Kim T, Choo K, Sung J, Saidutta MB, Ryu S, Song S, Ramachandra B, Rhee Y (2005) Appl Catal A Gen 290:1–8CrossRefGoogle Scholar
  53. 53.
    Zhong Y, Li G, Zhu L, Yan Y, Wu G, Hu C (2007) J Mol Catal A 272:169–173CrossRefGoogle Scholar
  54. 54.
    Ramirez JH, Maldonado-Hódar FJ, Pérez-Cadenas AF, Moreno-Castilla C, Costa CA, Madeira LM (2007) Appl Catal B Environ 75:312–323CrossRefGoogle Scholar
  55. 55.
    Rodríguez A, Ovejero G, Sotelo JL, Mestanza M, García J (2010) Ind Eng Chem Res 49:498–505CrossRefGoogle Scholar
  56. 56.
    Cleveland V, Bingham J, Kan E (2014) Sep Purif Technol 133:388–395CrossRefGoogle Scholar
  57. 57.
    Kilpimaa S, Kuokkanen T, Lassi U (2013) BioResources 8:1011–1027CrossRefGoogle Scholar
  58. 58.
    Domínguez CM, Quintanilla A, Ocón P, Casas JA, Rodriguez JJ (2013) Carbon 60:76–83CrossRefGoogle Scholar
  59. 59.
    Dastgheib SA, Ren J, Rostam-Abadi M, Chang R (2014) Appl Surf Sci 290:92–101CrossRefGoogle Scholar
  60. 60.
    Rey A, Faraldos M, Bahamonde A, Casas JA, Zazo JA, Rodríguez JJ (2008) Ind Eng Chem Res 47:8166–8174CrossRefGoogle Scholar
  61. 61.
    Tsoncheva T, Velinov N, Ivanova R, Stoycheva I, Tsyntsarski B, Spassova I, Paneva D, Issa G, Kovacheva D, Genova I (2015) Microporous Mesoporous Mater 217:87–95CrossRefGoogle Scholar
  62. 62.
    Williams DH, F. I (1995) Spectroscopic methods in organic chemistry, 5th edn. McGraw-Hill publishing, Berkshire, pp 41–45Google Scholar
  63. 63.
    Mao W, Ma H, Wang B (2009) J Hazard Mater 167:707–712CrossRefGoogle Scholar
  64. 64.
    Romanos J, Beckner M, Stalla D, Tekeei A, Suppes G, Jalisatgi S, Lee M, Hawthorne F, Robertson JD, Firlej L (2013) Carbon 54:208–214CrossRefGoogle Scholar
  65. 65.
    Radovic LR, Mureno-Castilla C, Rivera-Utrilla J. (2001). Carbon materials as adsorbents in aqueous solutions. In Marcel-Dekker (ed), Chemistry and physics of carbon, Marcel-Dekker, New York, pp. 227–405Google Scholar
  66. 66.
    Catrinescu C, Teodosiu C, Macoveanu M, Miehe-Brendlé J, Le Dred R (2003) Water Res 37:1154–1160CrossRefGoogle Scholar
  67. 67.
    Lücking F, Köser H, Jank M, Ritter A (1998) Water Res 32:2607–2614CrossRefGoogle Scholar
  68. 68.
    Timofeeva MN, Khankhasaeva ST, Badmaeva SV, Chuvilin AL, Burgina EB, Ayupov AB, Panchenko VN, Kulikova AV (2005) Appl Catal B 59:243–248CrossRefGoogle Scholar
  69. 69.
    Sabhi S, Kiwi J (2001) Water Res 35:1994–2002CrossRefGoogle Scholar
  70. 70.
    Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH (2012) Environ Int 42:91–99CrossRefGoogle Scholar
  71. 71.
    Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) J Am Chem Soc 129:10929–10936CrossRefGoogle Scholar
  72. 72.
    Sun S, Lemley AT (2011) J Mol Catal A Chem 349:71–79CrossRefGoogle Scholar
  73. 73.
    Khalil LB, Girgis BS, Tawfik TAM (2001) J Chem Technol Biotechnol 76:1132–1140CrossRefGoogle Scholar
  74. 74.
    Rey A, Zazo JA, Casas JA, Bahamonde A, Rodriguez JJ (2011) Appl Catal A Gen 402:146–155CrossRefGoogle Scholar
  75. 75.
    Gözmen B, Oturan MA, Oturan N, Erbatur O (2003) Environ Sci Technol 37:3716–3723CrossRefGoogle Scholar
  76. 76.
    Mezohegyi G, Erjavec B, Kaplan R, Pintar A (2013) Ind Eng Chem Res 52:9301–9307CrossRefGoogle Scholar
  77. 77.
    Luo S, Yang S, Sun C, Wang X (2011) Water Res 45:1519–1528CrossRefGoogle Scholar
  78. 78.
    Chakma S, Moholkar VS (2014) Ind Eng Chem Res 53:6855–6865CrossRefGoogle Scholar
  79. 79.
    Deborde M, Rabouan S, Mazellier P, Duguet J, Legube B (2008) Water Res 42:4299–4308CrossRefGoogle Scholar
  80. 80.
    Kondrakov AO, Ignatev AN, Frimmel FH, Bräse S, Horn H, Revelsky AI (2014) Appl Catal B Environ 160–161:106–114CrossRefGoogle Scholar
  81. 81.
    Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S (2005) Toxicol Sci 84:249–259CrossRefGoogle Scholar
  82. 82.
    Ye X, Zhou X, Needham LL, Calafat AM (2011) Anal Bioanal Chem 399:1071–1079CrossRefGoogle Scholar
  83. 83.
    Edmonds JS, Nomachi M, Terasaki M, Morita M, Skelton BW, White AH (2004) Biochem Biophys Res Commun 319:556–561CrossRefGoogle Scholar
  84. 84.
    Atkinson A, Roy D (1995) Biochem Biophys Res Commun 210:424–433CrossRefGoogle Scholar
  85. 85.
    Park H, Koduru JR, Choo K, Lee B (2015) J Hazard Mater 286:315–324CrossRefGoogle Scholar
  86. 86.
    Koduru JR, Lingamdinne LP, Singh J, Choo K- (2016) Process Saf Environ Prot 103:87–96CrossRefGoogle Scholar
  87. 87.
    Lu X, Jiang J, Sun K, Xie X, Hu Y (2012) Appl Surf Sci 258:8247–8252CrossRefGoogle Scholar
  88. 88.
    Li Q, Snoeyink VL, Mariñas BJ, Campos C (2003) Water Res 37:4863–4872CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Riikka Juhola
    • 1
  • Anne Heponiemi
    • 1
    Email author
  • Sari Tuomikoski
    • 1
  • Tao Hu
    • 1
  • Tuomas Vielma
    • 2
  • Ulla Lassi
    • 1
    • 2
  1. 1.Research Unit of Sustainable ChemistryUniversity of OuluOuluFinland
  2. 2.Kokkola University Consortium ChydeniusUniversity of JyväskyläKokkolaFinland

Personalised recommendations