Topics in Catalysis

, Volume 60, Issue 17–18, pp 1370–1379 | Cite as

Reactivity of Mixed Iron–Cobalt Spinels in the Lean Methane Combustion

  • Giuliana Ercolino
  • Paweł StelmachowskiEmail author
  • Andrzej Kotarba
  • Stefania SpecchiaEmail author
Original Paper


In this work a series of mixed iron-cobalt spinel catalysts was synthesized by solution combustion synthesis and doped with 3 wt% of palladium via incipient wetness impregnation. The catalysts were synthesized with different Co:Fe ratios, characterized from the structural and surface point of view (XRD, XRF, μRS, BET, FESEM), and tested toward the oxidation of methane in lean conditions, in gas mixtures containing from 0.5 to 2 vol% of CH4. The temperature window for the catalytic activity of the undoped mixed iron–cobalt spinels spread from 350 to 650 °C. While lower iron substitution levels lead to a decrease in the spinel’s activity, the catalyst with 2/3 of the cobalt in the Co3O4 substituted with iron shows similar activity to the parent Co3O4. Although the materials were proved to be heterogeneous from the crystal phase point of view (a mixture of cobalt–iron spinels), the observed reactivity still depends on the amount of iron introduced during the synthesis. The addition of Pd lowered the temperature window for the catalytic activity to the range of 250–550 °C. The promoting effect of Pd is most evident for the pure Co3O4 catalyst. In contrast to the Pd-free catalysts, the best activity of Pd-promoted samples was observed for the catalysts with the highest iron content.


Methane combustion Cobalt spinel Iron substitution Palladium doping 



The authors gratefully acknowledge the Italian project PRIN IFOAMS (“Intensification of catalytic processes for clean energy, low-emission transport and sustainable chemistry using open-cell FOAMS as novel advanced structured materials”, protocol n. PRIN-2010XFT2BB) funded by the Italian Ministry of Education, University and Research, and the Executive Programme for Scientific and Technological Cooperation CANALETTO (protocol n. M00478) between the Italian Republic (Ministry of Foreign Affairs) and the Republic of Poland (Ministry of Science and Higher Education). Mr. Mauro Raimondo is gratefully acknowledged for FESEM analyses and Dr. Salvatore Guastella for XPS analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Global Warming Potentials (2016) Accessed 16 Dec 2016
  2. 2.
    Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B Environ 39:1–37. doi: 10.1016/S0926-3373(02)00076-0 CrossRefGoogle Scholar
  3. 3.
    Setiawan A, Kennedy EM, Dlugogorski BZ et al (2015) The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal Today 258:276–283. doi: 10.1016/j.cattod.2014.11.031 CrossRefGoogle Scholar
  4. 4.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50:353–367. doi: 10.1016/S0920-5861(98)00515-X CrossRefGoogle Scholar
  5. 5.
    Specchia S, Palmisano P, Finocchio E, Busca G (2010) Ageing mechanisms on PdOx-based catalysts for natural gas combustion in premixed burners. Chem Eng Sci 65:186–192. doi: 10.1016/j.ces.2009.05.007 CrossRefGoogle Scholar
  6. 6.
    Müller CA, Maciejewski M, Koeppel RA, Baiker A (1999) Combustion of methane over palladium/zirconia: effect of Pd-particle size and role of lattice oxygen. Catal Today 47:245–252. doi: 10.1016/S0920-5861(98)00305-8 CrossRefGoogle Scholar
  7. 7.
    Bozo C, Guilhaume N, Garbowski E, Primet M (2000) Combustion of methane on CeO2-ZrO2 based catalysts. Catal Today 59:33–45. doi: 10.1016/S0920-5861(00)00270-4 CrossRefGoogle Scholar
  8. 8.
    Venezia AM, La Parola V, Liotta LF (2016) Structural and surface properties of heterogeneous catalysts: nature of the oxide carrier and supported particle size effects. Catal Today 285:114–124. doi: 10.1016/j.cattod.2016.11.004 CrossRefGoogle Scholar
  9. 9.
    Adam JD, Krishnaswamy SV, Talisa SH, Yoo KC (1990) Thin-film ferrites for microwave and millimeter-wave applications. J Magn Magn Mater 83:419–424. doi: 10.1016/0304-8853(90)90570-G CrossRefGoogle Scholar
  10. 10.
    Lee J, Park JY, Oh Y, Kim CS (1998) Magnetic properties of CoFe2O4 thin films prepared by a sol–gel method. J Appl Phys 84:2801–2804. doi: 10.1063/1.368393 CrossRefGoogle Scholar
  11. 11.
    Petrosius SC, Drago RS, Young V, Grunewald GC (1993) Low-temperature decomposition of some halogenated hydrocarbons using metal oxide/porous carbon catalysts. J Am Chem Soc 115:6131–6137. doi: 10.1021/ja00067a031 CrossRefGoogle Scholar
  12. 12.
    Ercolino G, Grzybek G, Stelmachowski P et al (2015) Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal Today 257:66–71. doi: 10.1016/j.cattod.2015.03.006 CrossRefGoogle Scholar
  13. 13.
    Giri AK, Kirkpatrick EM, Moongkhamklang P et al (2002) Photomagnetism and structure in cobalt ferrite nanoparticles. Appl Phys Lett 80:2341–2343. doi: 10.1063/1.1464661 CrossRefGoogle Scholar
  14. 14.
    Cornejo DR, Medina-Boudri A, Bertorello HR, Matutes-Aquino J (2002) Magnetization reversal in co-precipitated cobalt ferrite. J Magn Magn Mater 242–245:194–196. doi: 10.1016/S0304-8853(01)01169-6 CrossRefGoogle Scholar
  15. 15.
    Sahoo SC, Venkataramani N, Prasad S et al (2012) Magnetic properties of nanocrystalline CoFe2O4/ZnFe2O4 bilayers. J Superconduct Nov Magn 25:2653–2657. doi: 10.1007/s10948-011-1237-y CrossRefGoogle Scholar
  16. 16.
    Moumen N, Veillet P, Pileni MP (1995) Controlled preparation of nanosize cobalt ferrite magnetic particles. J Magn Magn Mater 149:67–71. doi: 10.1016/0304-8853(95)00340-1 CrossRefGoogle Scholar
  17. 17.
    Ballarini N, Cavani F, Passeri S et al (2009) Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: the effect of morphology on catalytic performance. Appl Catal A 366:184–192. doi: 10.1016/j.apcata.2009.07.003 CrossRefGoogle Scholar
  18. 18.
    Mountapmbeme Kouotou P, Vieker H, Tian ZY et al (2014) Structure–activity relation of spinel-type Co–Fe oxides for low-temperature CO oxidation. Catal Sci Technol 4:3359. doi: 10.1039/C4CY00463A CrossRefGoogle Scholar
  19. 19.
    Specchia S, Finocchio E, Busca G, Specchia V (2010) Combustion synthesis. Handb Combust. doi: 10.1002/9783527628148.hoc088 Google Scholar
  20. 20.
    Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:334–340. doi: 10.1016/j.nimb.2009.09.053 CrossRefGoogle Scholar
  21. 21.
    Spectroscopy Products Division (2006) inVia Raman microscope Objective lens options. RenishawGoogle Scholar
  22. 22.
    Bahlawane N, Ngamou PHT, Vannier V et al (2009) Tailoring the properties and the reactivity of the spinel cobalt oxide. Phys Chem Chem Phys 11:9224–9232. doi: 10.1039/b910707j CrossRefGoogle Scholar
  23. 23.
    Hosterman BD (2011) Raman spectroscopic study of solid solution spinel oxides. Phys (Coll Park Md) Dr 156. doi: 10.1007/978-3-319-02868-2_3 Google Scholar
  24. 24.
    Hagelin-Weaver HAE, Hoflund GB, Minahan DM, Salaita GN (2004) Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Appl Surf Sci 235:420–448. doi: 10.1016/j.apsusc.2004.02.062 CrossRefGoogle Scholar
  25. 25.
    Naumann D’Alnoncourt R, Friedrich M, Kunkes E et al (2014) Strong metal-support interactions between palladium and iron oxide and their effect on CO oxidation. J Catal 317:220–228. doi: 10.1016/j.jcat.2014.06.019 CrossRefGoogle Scholar
  26. 26.
    Titkov AI, Salanov AN, Koscheev SV, Boronin AI (2006) Mechanisms of Pd(1 1 0) surface reconstruction and oxidation: XPS, LEED and TDS study. Surf Sci 600:4119–4125. doi: 10.1016/j.susc.2006.01.131 CrossRefGoogle Scholar
  27. 27.
    Ferreira TAS, Waerenborgh JC, Mendonça MHRM, et al (2003) Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci 5:383–392. doi: 10.1016/S1293-2558(03)00011-6 CrossRefGoogle Scholar
  28. 28.
    Stefanov P (1993) Cobalt-iron hydroxide carbonate as a precursor for the synthesis of high-dispersity spinel mixed oxides. Chem Mater 59:576–582Google Scholar
  29. 29.
    Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27. doi: 10.1016/j.apcata.2008.05.018 CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Commodity and Metal Prices (2016) Accessed 22 Dec 2016
  32. 32.
    Satsuma A, Osaki K, Yanagihara M et al (2015) Low temperature combustion over supported Pd catalysts—strategy for catalyst design. Catal Today 258:83–89. doi: 10.1016/j.cattod.2015.03.047 CrossRefGoogle Scholar
  33. 33.
    Kumar G, Lau SLJ, Krcha MD, Janik MJ (2016) Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal 6:1812–1821. doi: 10.1021/acscatal.5b02657 CrossRefGoogle Scholar
  34. 34.
    Alifanti M, Kirchnerova J, Delmon B, Klvana D (2004) Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility. Appl Catal A Gen 262:167–176. doi: 10.1016/j.apcata.2003.11.024 CrossRefGoogle Scholar
  35. 35.
    Manova E, Tsoncheva T, Paneva D et al (2004) Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A Gen 277:119–127. doi: 10.1016/j.apcata.2004.09.002 CrossRefGoogle Scholar
  36. 36.
    Maniak G, Stelmachowski P, Stanek JJ et al (2011) Catalytic properties in N2O decomposition of mixed cobalt-iron spinels. Catal Commun 15:127–131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.Faculty of ChemistryJagiellonian University in KrakówKrakówPoland

Personalised recommendations