Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structure and Reactivity of sol–gel V/SiO2 Catalysts for the Direct Conversion of Methane to Formaldehyde

  • 314 Accesses

  • 5 Citations

Abstract

Vanadium oxide-silica catalysts prepared by the sol–gel method were characterized by different techniques (nitrogen adsorption–desorption isotherms, scanning electron microscopy, X-ray diffraction, temperature-programmed reduction, Raman spectroscopy and X-ray photoelectron spectroscopy) and applied in the direct conversion of methane to C1 oxygenates. The addition of a small amount of nitric oxide to the reaction mixture reduced the energy barrier for H-abstraction, increasing the methane conversion and formaldehyde yield. Correlations between the characterization and activity results indicate that the reaction occurs on tetrahedrally coordinated vanadium sites, as the maximum formaldehyde yield was found for the catalyst with a vanadium content of 1.5 wt%, which has a high surface density of well-dispersed tetrahedrally coordinated monomeric or slightly oligomerized VO4 species. On the other hand, a high space velocity and CH4:O2 ratio decrease the subsequent oxidation to carbon oxides, increasing oxygenate formation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Intergovernmental panel on climate change, In: Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

  2. 2.

    Bergman RG (2007) Organometallic chemistry: C–H activation. Nature 446:391–393

  3. 3.

    Zhang Q, He D, Zhu Q (2008) Direct partial oxidation of methane to methanol: reaction zones and role of catalyst location. J Nat Gas Chem 17:24–28

  4. 4.

    Olah GO, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498

  5. 5.

    Beznis NV, Weckhuysen BM, Bitter JH (2010) Partial oxidation of methane over Co-ZSM-5: tuning the oxygenate selectivity by altering the preparation route. Catal Lett 136:52–56

  6. 6.

    Navarro RM, Peña MA, Fierro JLG (2006) in J.L.G. Fierro (ed) Metal oxides: chemistry and applications. CRC Press, Taylor and Francis Group, Boca Raton, pp 463–490

  7. 7.

    Bromly JH, Barnes FI, Muris S, You X, Haynes BS (1996) Kinetic and thermodynamic sensitivity analysis of the NO-sensitised oxidation of methane. Combust Sci Technol 115: 259–296.

  8. 8.

    Alvarez-Galvan MC, Mota N, Ojeda M, Rojas S, Navarro RM, Fierro JLG (2011) Direct methane conversion routes to chemicals and fuels. Catal Today 171: 15–23

  9. 9.

    Tabata K, Teng Y, Takemoto T, Suzuki E, Bañares MA, Peña MA, Fierro JLG (2002) Activation of methane by oxygen and nitrogen oxides. Catal Rev-Sci Eng 44: 1–58

  10. 10.

    Irusta S, Lombardo EA, Miro EE (1994) Effects of NO and solids on the oxidation of methane to formaldehyde. Catal Lett 29:339–348

  11. 11.

    Taniewski M (2004) The challenges and recent advances in C1 chemistry and technology. Polish J Appl Chem 48 (1–2):1–21

  12. 12.

    Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142 (1–2): 2–8

  13. 13.

    Chempath S, Bell AT (2007) A DFT study of the mechanism and kinetics of methane oxidation to formaldehyde occurring on silica-supported molybdena. J Catal 247(1):119–126

  14. 14.

    Blasco T, Concepcion P, Nieto JML, Perez-Pariente J (1995) Preparation, characterization, and catalytic properties of VAPO-5 for the oxydehydrogenation of propane. J Catal 152:1–17

  15. 15.

    de Vekki AV, Marakaev ST (2009) Catalytic partial oxidation of methane to formaldehyde. Russ J Appl Chem 82(4):521–536

  16. 16.

    Ono T, Nakamura M, Unno K, Oyun A, Ohnishi J, Kataoka M, Masakazu F (2008) Partial oxidation of CH4 over Al/silica catalysts using molecular oxygen. J Mol Cat A 285:169–175

  17. 17.

    Zhang H, Ying P, Zhang J, Liang C, Feng Z, Li C (2004) In: Bao X, Xu Y (eds) Natural gas conversion VII. Elsevier, Amsterdam, pp 547–552

  18. 18.

    Wang LN, Zhou ZX, Li XN, Ma TM, He SG (2015) Thermal conversion of methane to formaldehyde promoted by gold in AuNbO3(+) cluster cations. Chem Eur J 21:6957–6961

  19. 19.

    Zhao YX, Li ZY, Yuan Z, Li XN, He SG (2014) Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4(−) cluster anions. Angew Chem Int Ed Engl 53:9482–9486

  20. 20.

    Wang ZC, Dietl N, Kretschmer R, Ma JB, Weiske T, Schlangen M, Schwarz H (2012) Direct conversion of methane into formaldehyde mediated by [Al2O3]+ at room temperature. Angew Chem Int Ed Engl 51:3703–3707

  21. 21.

    Sun Q, Jehng JM, Hu H, Herman RG, Wachs IE, Klier K (1997) In situ raman spectroscopy during the partial oxidation of methane to formaldehyde over supported vanadium oxide catalysts. J Catal 165:91–101

  22. 22.

    Herman RG, Sun Q, Shi Ch, Klier K, Wang ChB, Hu H, Wachs IE, Bhasin MM (1997) Development of active oxide catalysts for the direct oxidation of methane to formaldehyde. Catal Today 37:1–14

  23. 23.

    Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A 157:67–90

  24. 24.

    Komarmeni I, Pidugu R, Menon VC (1996) Water adsorption and desorption isotherms of silica and alumina mesoporous molecular sieves. J Porous Mater 3(2):99–106

  25. 25.

    Wachs IE (1996) Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal Today 27(3–4): 437–455

  26. 26.

    Wang CB, Herman RG RG, Shi CS CS, Sun Q Q, Roberts JE JE (2003) V2O5–SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties. Appl Catal A 247(2):321–333

  27. 27.

    Arena F, Giordano N N, Parmaliana A A (1997) Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. II. redox properties and reactivity of SiO2, MoO3 /SiO2, V2O5 /SiO2, TiO2, and V2O5 /TiO2 systems. J Catal 167:66–76

  28. 28.

    Kustrowski P, Segura Y, Chmielarz L, Surman J, Dziembaj R, Cool P, Vansant EF (2006) VOx supported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O. Catal Today 114(2–3):307–313

  29. 29.

    Gao X, Bare SR, Weckhuysen BM, Israel E, Wachs IE (1998) In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions. J Phys Chem B 102:10842–10852

  30. 30.

    Tian H, Ross EI, Wachs IE (2006) Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. J Phys Chem B 110(19):9593–9600

  31. 31.

    Moisii C, van de Burgt LJ, Stiegman AE (2008) Resonance raman spectroscopy of discrete silica-supported vanadium oxide. Chem Mater 20(12):3927–3935

  32. 32.

    Launay H, Loridant S, Nguyen DL, Volodin AM, Dubois JL, Millet JMM (2007) Vanadium species in new catalysts for the selective oxidation of methane to formaldehyde: activation of the catalytic sites. Catal Today 128: 176–182

  33. 33.

    Launay H, Loridant S, Pigamo A, Dubois JL, Millet JMM (2007) Vanadium species in new catalysts for the selective oxidation of methane to formaldehyde: specificity and molecular structure dynamics with water. J Catal 246:390–398

  34. 34.

    Du G, Lim S, Yang Y, Wang C, Pfefferle L, Haller GL (2006) Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde. Appl Catal A 302:48–61

  35. 35.

    Wallis P, Schönborn E, Kalevaru VN, Martin A, Wohlrab S (2015) Enhanced formaldehyde selectivity in catalytic methane oxidation by vanadia on Ti-doped SBA-15. RSC Adv 5:69509–69513

  36. 36.

    Berndt H, Martin A, Brückner A, Schreier E, Müller D, Kosslick H, Wolf GU, Lücke B (2000) Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. J Catal 191(2):384–400

  37. 37.

    Ding XL, Zhao YX, Wu XN, Wang ZC, Ma JB, He SG (2010) Hydrogen-atom abstraction from methane by stoichiometric vanadium–silicon heteronuclear oxide cluster cation. Chem-A European J 16(37):11463–11470

  38. 38.

    Yu J, Scheffler M, Metiu H (2013) Oxidative dehydrogenation of methane by isolated vanadium oxide clusters supported on Au (111) and Ag (111) surfaces. J Phys Chem C 117(36):18475–18483

  39. 39.

    Nguyen LD, Loridant S, Launay H, Pigamo A, Dubois JL, Millet JMM (2006) Study of new catalysts based on vanadium oxide supported on mesoporous silica for the partial oxidation of methane to formaldehyde: catalytic properties and reaction mechanism. J Catal 237:38–48

  40. 40.

    Muylaert I, van der Voort P (2009) Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy. Phys Chem Chem Phys 11:2826–2832

Download references

Acknowledgements

This work was supported by Najran University, Najran, The Kingdom of Saudi Arabia.

Author information

Correspondence to M. Consuelo Alvarez-Galvan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loricera, C.V., Alvarez-Galvan, M.C., Guil-Lopez, R. et al. Structure and Reactivity of sol–gel V/SiO2 Catalysts for the Direct Conversion of Methane to Formaldehyde. Top Catal 60, 1129–1139 (2017). https://doi.org/10.1007/s11244-017-0809-x

Download citation

Keywords

  • Vanadium catalysts
  • Methane/formaldehyde
  • Methane conversion
  • Sol–gel
  • Direct processes