Advertisement

Topics in Catalysis

, Volume 60, Issue 15–16, pp 1072–1081 | Cite as

Development of Silver Based Catalysts Promoted by Noble Metal M (M = Au, Pd or Pt) for Glycerol Oxidation in Liquid Phase

  • Soraya Zaid
  • Elżbieta Skrzyńska
  • Ahmed Addad
  • Shreya Nandi
  • Louise Jalowiecki-Duhamel
  • Jean-Sebastien Girardon
  • Mickaël Capron
  • Franck Dumeignil
Original Paper

Abstract

The liquid-phase oxidation of glycerol was studied to obtain glycolic acid as a value-added molecule. The effect of metal addition to silver based catalyst was investigated under strong basic condition. The best catalytic performance was obtained over silver catalyst promoted with a small amount of platinum Ag95–Pt5/CeO2. Namely, the conversion close to 54% was reached after 5 h of reaction at 60 °C, with the selectivity to glycolic acid of 51%. Further increase in the amount of promotor (up to 50%) changed the reaction mechanism to product selectively the glyceric acid.

Graphical Abstract

Keywords

glycerol oxidation silver based catalysts glycolic acid 

Notes

Acknowledgements

This work was performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE) P.I.V.E.R.T. (http://www.institut-pivert.com) selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Supplementary material

11244_2017_800_MOESM1_ESM.pdf (717 kb)
Supplementary material 1 (PDF 717 KB)

References

  1. 1.
    Bozell J, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates - The US department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  2. 2.
    Katryniok B, Kimura H, Skrzyńska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem 13:1960–1979CrossRefGoogle Scholar
  3. 3.
    Skrzyńska E, Zaid S, Girardon J-S, Capron M, Dumeignil F (2015) Catalytic behaviour of four different supported noble metals in the crude glycerol oxidation. Appl Catal A 499:89–100CrossRefGoogle Scholar
  4. 4.
    Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal Today 102–103:203–212CrossRefGoogle Scholar
  5. 5.
    Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058CrossRefGoogle Scholar
  6. 6.
    Duhamel L, Fang W, Paul S, Dumeignil F (2014) Method Prod Hydrogen FR3000737(A1)Google Scholar
  7. 7.
    Skrzyńska E, Zaid S, Addad A, Girardon J.-S, Capron M, Dumeignil F (2016) Performance of Ag/Al2O3 catalysts in the liquid phase oxidation of glycerol—effect of preparation method and reaction conditions. Catal Sci Technol 6:3182–3196CrossRefGoogle Scholar
  8. 8.
    Mott D, Mai NT, Thuy NTB, Sakata T, Higashimine K, Koyano M, Maenosono S (2011) Elucidation of the complex structure of nanoparticles composed of bismuth, antimony, and tellurium using scanning transmission microscopy. J Phys Chem C 11:17334–17340CrossRefGoogle Scholar
  9. 9.
    Skrzyńska E, Wondołowska-Grabowska A, Capron M, Dumeignil F (2014) Crude glycerol as a raw material for the liquid phase oxidation reaction. Appl Catal A 482:245–257CrossRefGoogle Scholar
  10. 10.
    Pelletier F (2012) Synthèse et étude de nanomatériaux hybrides magnétiques à base Fer-Bismuth. Thése de doctorat de l’université de ToulouseGoogle Scholar
  11. 11.
    Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139CrossRefGoogle Scholar
  12. 12.
    Skrzyńska E, Ftouni J, Mamede A-S, Addad A, Trentesaux M, Girardon J-S, Capron M, Dumeignil F (2014) Glycerol oxidation over gold supported catalysts—“Two faces” of sulphur based anchoring agent. J Mol Catal A 382:71–78CrossRefGoogle Scholar
  13. 13.
    Dimitratos N, Porta F, Prati L (2005) Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method: synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl Catal A 291:210–214CrossRefGoogle Scholar
  14. 14.
    Cook MM, Lander JA (1979) Use of Sodium borohydride to control heavy metal discharge in the photographic industry. J Appl Photogr Eng 5:144–147Google Scholar
  15. 15.
    Ding RG, Yan ZF (2002) Adsorption properties studies of the nickel catalysts for carbon dioxide reforming of methane. Fuel Chem Div Preprints 47:103–105.Google Scholar
  16. 16.
    Stathatos E, Lianos P, Falaras P, Siokou A (2000) Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films. Langmuir 16:2398–2400CrossRefGoogle Scholar
  17. 17.
    Zhang G, Du M, Li Q, Li X, Huang J, Jianga X, Sun D (2013) Green synthesis of Au–Ag alloy nanoparticles using Cacumen platycladi extract. RSC Adv 3:1878–1884CrossRefGoogle Scholar
  18. 18.
    Kiinig U, Marksteiner P, Redinger J, Weinberger P (1986) A theoretical study of X-Ray photoemission spectra (XPS) of some noble metal alloys: Au/Pt, Ag/Au, Ag/Pt and Au/Ni. Z Phys B 65:139–114CrossRefGoogle Scholar
  19. 19.
    Nascente PA, de Castro SG, Landers R, Kleiman GG (1991) X-ray photoemission and Auger energy shifts in some gold-palladium alloys. Phys Rev B 43:4659–4666CrossRefGoogle Scholar
  20. 20.
    NIST X-ray Photoelectron Spectroscopy Database: http://srdata.nist.gov/xps/XPSDetailPage.aspx? AllDataNo = 30927.
  21. 21.
    Zhou X, Zheng L, Li R, Li B, Pillai S, Xu P, Zhang Y (2012) Biotemplated fabrication of size controlled palladium nanoparticle chains. J Mater Chem 22:8862–8867CrossRefGoogle Scholar
  22. 22.
    Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, Wang X, Lu Y, Hu Z (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18:1747–1750CrossRefGoogle Scholar
  23. 23.
    Xu J, Liu X, Chen Y, Zhou Y, Lu T, Tang Y (2012) Tang. Platinum–Cobalt alloy networks for methanol oxidation electrocatalysis. J Mater Chem 22:23659–23667CrossRefGoogle Scholar
  24. 24.
    Lu Z, Yang Z (2010) Interfacial properties of NM/CeO2 (111) (NM = noble metal atoms or clusters of Pd, Pt and Rh): a first principles study. J Phys Condens Matter 22:p. 475003-1-10Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Soraya Zaid
    • 1
  • Elżbieta Skrzyńska
    • 2
  • Ahmed Addad
    • 3
  • Shreya Nandi
    • 1
  • Louise Jalowiecki-Duhamel
    • 1
  • Jean-Sebastien Girardon
    • 1
  • Mickaël Capron
    • 1
  • Franck Dumeignil
    • 1
  1. 1.University of Lille, CNRS, Centrale Lille, ENSCL, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideLilleFrance
  2. 2.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyCracowPoland
  3. 3.CNRS UMR 8207, Unité Matériaux et TransformationsUniversité de Lille 1 Sciences et TechnologiesVilleneuve d’AscqFrance

Personalised recommendations