Advertisement

Topics in Catalysis

, Volume 60, Issue 15–16, pp 1226–1250 | Cite as

Glycerol Steam Reforming for Hydrogen Production over Nickel Supported on Alumina, Zirconia and Silica Catalysts

  • N. D. Charisiou
  • K. N. Papageridis
  • G. Siakavelas
  • L. Tzounis
  • K. Kousi
  • M. A. Baker
  • S. J. Hinder
  • V. Sebastian
  • K. Polychronopoulou
  • M. A. GoulaEmail author
Original Paper

Abstract

The aim of the work was to investigate the influence of support on the catalytic performance of Ni catalysts for the glycerol steam reforming reaction. Nickel catalysts (8 wt%) supported on Al2O3, ZrO2, SiO2 were prepared by the wet impregnation technique. The catalysts’ surface and bulk properties, at their calcined, reduced and used forms, were determined by ICP, BET, XRD, NH3-TPD, CO2-TPD, TPR, XPS, TEM, TPO, Raman, SEM techniques. The Ni/Si sample, even if it was less active for T <600 °C, produces more gaseous products and reveals higher H2 yield for the whole temperature range. Ni/Zr and Ni/Si catalysts facilitate the WGS reaction, producing a gas mixture with a high H2/CO molar ratio. Ni/Si after stability tests exhibits highest values for total (70%) and gaseous products (45%) glycerol conversion, YH2 (2.5), SH2 (80%), SCO2 (65%), H2/CO molar ratio (6.0) and lowest values for SCO (31%), SCH4 (3.1%), CO/CO2 molar ratio (0.48) among all samples. The contribution of the graphitized carbon formed on the catalysts follows the trend Ni/Si (I D /I G  = 1.34) < Ni/Zr (I D /I G = 1.08) < Ni/Al (I D /I G = 0.88) and indicates that the fraction of different carbon types depends on the catalyst’s support nature. It is suggested that the type of carbon is rather more important than the amount of carbon deposited in determining stability. It is confirmed that the nature of the support affects mainly the catalytic performance of the active phase and that Ni/SiO2 can be considered as a promising catalyst for the glycerol steam reforming reaction.

Keywords

Hydrogen production Glycerol steam reforming Nickel catalysts Alumina Zirconia Silica 

Notes

Acknowledgements

Financial support by the program THALIS implemented within the framework of Education and Lifelong Learning Operational Programme, co-financed by the Hellenic Ministry of Education, Lifelong Learning and Religious Affairs and the European Social Fund, Project Title: ‘Production of Energy Carriers from Biomass by Products. Glycerol Reforming for the Production of Hydrogen, Hydrocarbons and Superior Alcohols’ is gratefully acknowledged. Moreover, the authors also wish to acknowledge financial support provided by the Committee of the Special Account for Research Funds of the Technological Educational Institute of Western Macedonia (ELKE, TEIWM, Grant Number: 80126). L.T. gratefully acknowledges the Bodossaki Foundation for financial support.

References

  1. 1.
    Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sust Energ Rev 42:712–725CrossRefGoogle Scholar
  2. 2.
    Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sust Energ Rev 30:950–960CrossRefGoogle Scholar
  3. 3.
    Bobadilla LF, Penkova A, Romero-Sarria F, Centeno MA, Odriozola JA (2014) Influence of the acid-base properties over NiSn/MgO-Al2O3 catalysts in the hydrogen production from glycerol steam reforming. Int J Hydrogen Energy 39:5704–5712CrossRefGoogle Scholar
  4. 4.
    Lin YC (2013) Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrogen Energy 38:2678–2700CrossRefGoogle Scholar
  5. 5.
    Franchini CA, Aranzaez W, de Farias AMD, Pecchi G, Fraga MA (2014) Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl Catal B 147:193–202CrossRefGoogle Scholar
  6. 6.
    Silva JM, Soria MA, Madeira LM (2015) Challenges and strategies for optimization of glycerol steam reforming process. Renew Sustain Energy Rev 42:1187–1213CrossRefGoogle Scholar
  7. 7.
    Chen H, Ding Y, Cong NT, Dou B, Dupont V, Ghadiri M, Williams PT (2011) A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renew Energy 36:779–788CrossRefGoogle Scholar
  8. 8.
    Wang X, Li S, Wang H, Liu B, Ma X (2008) Thermodynamic analysis of glycerin steam reforming. Energy Fuels 22:4285–4291CrossRefGoogle Scholar
  9. 9.
    Adhikari S, Fernando S, Haryanto A (2007) A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin. Energy Fuels 21:2306–2310CrossRefGoogle Scholar
  10. 10.
    Freitas ACD, Guirardello R (2014) Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization. Int J Hydrogen Energy 39:17969–17984CrossRefGoogle Scholar
  11. 11.
    Adhikari S, Fernando S, Haryanto A (2007) Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catal Today 129:355–364CrossRefGoogle Scholar
  12. 12.
    Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguıa CR (2015) Steam reforming of glycerol: hydrogen production optimization. Int J Hydrogen Energy 40:6097–6106CrossRefGoogle Scholar
  13. 13.
    Iriondo A, Barrio VL, Cambra JF, Arias PL, Güemez MB, Navarro RM, Sanchez-Sanchez MC, Fierro JLG (2009) Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catal Commun 10:1275–1278CrossRefGoogle Scholar
  14. 14.
    Pompeo F, Santori GF, Nichio NN (2011) Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catal Today 172:183–188CrossRefGoogle Scholar
  15. 15.
    Yurdakul M, Ayas N, Bizkarra K, El Doukkali M, Cambra JF (2016) Preparation of Ni-based catalysts to produce hydrogen from glycerol by steam reforming process. Int J Hydrogen Energy 41:8084–8091CrossRefGoogle Scholar
  16. 16.
    Gallo A, Pirovano C, Ferrini P, Marelli M, Psaro R, Santangelo S, Faggio G, Dal Santo V (2012) Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Appl Catal B 121–122:40–49CrossRefGoogle Scholar
  17. 17.
    Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A 381:1–7CrossRefGoogle Scholar
  18. 18.
    Iriondo A, Cambra JF, Guemez MB, Barrio VL, Requies J, Sanchez-Sanchez MC, Navarro RM (2012) Effect of ZrO2 addition on Ni/Al2O3 catalyst to produce H2 from glycerol. Int J Hydrogen Energy 37:7084–7093CrossRefGoogle Scholar
  19. 19.
    Bobadilla LF, Penkova A, Alvarez A, Dominguez MI, Romero-Sarria F, Centeno MA, Odriozola JA (2015) Glycerol steam reforming on bimetallic NiSn/CeO2-MgO-Al2O3 catalysts: influence of the support, reaction parameters and deactivation/regeneration processes. Appl Catal A 492:38–47CrossRefGoogle Scholar
  20. 20.
    Cheng CK, Foo SY, Adesina AA (2011) Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal Today 178:25–33CrossRefGoogle Scholar
  21. 21.
    Goula MA, Charisiou ND, Pandis PK, Stathopoulos VN (2016) A Ni/apatite-type lanthanum silicate supported catalyst in glycerol steam reforming reaction. RSC Adv 6:78954–78958CrossRefGoogle Scholar
  22. 22.
    Goula MA, Charisiou ND, Papageridis KN, Siakavelas G (2016) Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction. Chin J Catal 37:1949–1965CrossRefGoogle Scholar
  23. 23.
    Papageridis KN, Charisiou ND, Siakavelas G, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni, Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Proc Technol 152:156–175CrossRefGoogle Scholar
  24. 24.
    Ebshish A, Yaakob Z, Narayanan B, Bshish A, Daud WRW (2012) Steam reforming of glycerol over Ni supported alumina xerogel for hydrogen production. Energy Procedia 18:552–559CrossRefGoogle Scholar
  25. 25.
    Sanchez EA, Comelli RA (2012) Hydrogen by glycerol steam reforming on a nickel-alumina catalyst: Deactivation processes and regeneration. Int J Hydrogen Energy 37:14740–14746CrossRefGoogle Scholar
  26. 26.
    Sanchez EA, D’Angelo MA, Comelli RA (2010) Hydrogen production from glycerol on Ni/Al2O3 catalyst. Int J Hydrogen Energy 35:5902–5907CrossRefGoogle Scholar
  27. 27.
    Senseni AZ, Meshkani F, Rezaei M (2016) Steam reforming of glycerol on mesoporous nanocrystalline Ni/Al2O3 catalysts for H2 production. Int J Hydrogen Energy 41:20137–20146CrossRefGoogle Scholar
  28. 28.
    Suffredinia DFP, Thyssen VV, de Almeida PMM, Gomes RS, Borges MC, de Farias AMD, Assaf EM, Fraga MA, Brandao ST (2016) Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts. Catal Today. doi:  10.1016/j.cattod.2016.07.027 Google Scholar
  29. 29.
    Buffoni IN, Pompeo F, Santori GF, Nichio NN (2009) Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catal Commun 10:1656–1660CrossRefGoogle Scholar
  30. 30.
    Iriondo A, Barrio VL, Cambra JF, Arias PL, Güemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2010) Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. Int J Hydrogen Energy 35:11622–11633CrossRefGoogle Scholar
  31. 31.
    Dieuzeide ML, Jobbagy M, Amadeo N (2013) Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg (II). Effect of Mg (II) content. Catal Today 213:50–57CrossRefGoogle Scholar
  32. 32.
    Kim SH, Jung JS, Yang EH, Lee KY, Moon DJ (2014) Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalysts. Catal Today 228:145–151CrossRefGoogle Scholar
  33. 33.
    Thyssen VV, Maia TA, Assaf EM (2013) Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming. Fuel 105:358–363CrossRefGoogle Scholar
  34. 34.
    Charisiou ND, Papageridis KN, Siakavelas G, Tzounis L, Goula MA (2016) Effect of active metal supported on SiO2 for selective hydrogen production from the glycerol steam reforming reaction. BioRes 11:10173–10189CrossRefGoogle Scholar
  35. 35.
    Nichele V, Signoretto M, Menegazzo F, Gallo A, Santo VD, Cruciani G, Cerrato G (2012) Glycerol steam reforming for hydrogen production: design of Ni supported catalysts. Appl Catal B 111–112:225–232CrossRefGoogle Scholar
  36. 36.
    Sadanandam G, Sreelatha N, Phanikrishna Sharma MV, Kishta Reddy S, Srinivas B, Venkateswarlu K, Krishnudu T, Subrahmanyam M, Durga Kumari V (2012) Steam reforming of glycerol for hydrogen production over Ni/SiO2 catalyst. ISRN Chemical Engineering Article ID 591587:10Google Scholar
  37. 37.
    Rossetti I, Gallo A, dal Santo V, Bianchi CL, Nichele V, Signoretto M, Finocchio E, Ramis G, di Michele A (2013) Nickel catalysts supported over TiO2, SiO2 and ZrO2 for the steam reforming of glycerol. ChemCatChem 5:294–306CrossRefGoogle Scholar
  38. 38.
    Calles JA, Carrero A, Vizcaíno AJ, Garcia-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206CrossRefGoogle Scholar
  39. 39.
    Adhikari S, Fernando SD, Haryanto A (2008) Hydrogen production from glycerin by steam reforming over nickel catalysts. Renew Energy 33:1097–1100CrossRefGoogle Scholar
  40. 40.
    Pant KK, Jain R, Jain S (2011) Renewable hydrogen production by steam reforming of glycerol over Ni/CeO2 catalyst prepared by precipitation deposition method. Korean J Chem Eng 28:1859–1866CrossRefGoogle Scholar
  41. 41.
    Adhikari S, Fernando SD, To SDF, Bricka RM, Steele PH, Haryanto A (2008) Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuels 22:1220–1226CrossRefGoogle Scholar
  42. 42.
    Veiga S, Bussi J (2016) Efficient conversion of glycerol to a H2 rich gas mixture by steam reforming over NiLaZr catalysts hydrogen production from glycerol steam reforming over molybdena-alumina catalysts. Top Catal 59:186–195CrossRefGoogle Scholar
  43. 43.
    Menor M, Sayas S, Chica A (2017) Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol. Fuel 193:351–358CrossRefGoogle Scholar
  44. 44.
    Jiang B, Zhang C, Wang K, Dou B, Song Y, Chen H, Xu Y (2016) Highly dispersed Ni/montmorillonite catalyst for glycerol steam reforming: effect of Ni loading and calcination temperature. Appl Therm Eng 109:99–108CrossRefGoogle Scholar
  45. 45.
    Bepari S, Pradhan NC, Dalai AK (2017) Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst. Catal Today (in press)Google Scholar
  46. 46.
    El Doukkali M, Iriondo A, Cambra JF, Arias PL (2014) Recent improvement on H2 production by liquid phase reforming of glycerol: catalytic properties and performance, and deactivation studies. Top Catal 57:1066–1077CrossRefGoogle Scholar
  47. 47.
    Wang C, Dou B, Chen H, Song Y, Xu Y, Du X, Zhang L, Luo T, Tan C (2013) Renewable hydrogen production from steam reforming of glycerol by Ni–Cu–Al, Ni–Cu–Mg, Ni–Mg catalysts. Int J Hydrogen Energ 38:3562–3571CrossRefGoogle Scholar
  48. 48.
    Dou B, Wang C, Song Y, Chen H, Xu Y (2014) Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol. Energy Convers Manag 78:253–259CrossRefGoogle Scholar
  49. 49.
    Sanchez EA, Comelli RA (2014) Hydrogen production by glycerol steam-reforming over nickel and nickel–cobalt impregnated on alumina. Int J Hydrogen Energ 39:8650–8655CrossRefGoogle Scholar
  50. 50.
    Cheng CK, Foo SY, Adesina AA (2011) Carbon deposition on bimetallic Co–Ni/Al2O3 catalyst during steam reforming of glycerol. Catal Today 164:268–274CrossRefGoogle Scholar
  51. 51.
    Cheng CK, Foo SY, Adesina AA (2010) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12:292–298CrossRefGoogle Scholar
  52. 52.
    Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF (2015) Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. Int J Hydrogen Energ 40:9183–9200CrossRefGoogle Scholar
  53. 53.
    Goula MA, Lemonidou AA, Efstathiou AM (1996) Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO–Al2O3 catalysts studied by various transient techniques. J Catal 161:626–640CrossRefGoogle Scholar
  54. 54.
    Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247CrossRefGoogle Scholar
  55. 55.
    Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20:199–217CrossRefGoogle Scholar
  56. 56.
    Sarkar D, Adak S, Chu MC, Cho SJ, Mitra NK (2007) Influence of ZrO2 on the thermo-mechanical response of nano-ZTA. Ceram Int 33:255–261CrossRefGoogle Scholar
  57. 57.
    Youn MH, Seo JG, Jung JC, Park S, Park DR, Lee SB, Song IK (2009) Hydrogen production by auto-thermal reforming of ethanol over Ni catalyst supported on ZrO2 prepared by a sol–gel method: effect of H2O/P123 mass ratio in the preparation of ZrO2. Catal Today 146:57–62CrossRefGoogle Scholar
  58. 58.
    Salavati-Niasari M, Dadkhah M, Davar F (2009) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron 28:3005–3009CrossRefGoogle Scholar
  59. 59.
    Zhang J, Li F (2015) Coke-resistant Ni/SiO2 catalyst for dry reforming of methane. Appl Catal B 176–177:513–521CrossRefGoogle Scholar
  60. 60.
    Jozwiak WK, Szubiakiewicz E, Goralski J, Klonkowski A, Paryjczak T (2004) Physico-chemical and catalytic study of the Co/SiO2 catalysts. Kinet Catal 45:247–255CrossRefGoogle Scholar
  61. 61.
    Charisiou ND, Baklavaridis A, Papadakis VG, Goula MA (2016) Synthesis gas production via the biogas reforming reaction over Ni/MgO–Al2O3 and Ni/CaO–Al2O3 catalysts. Waste Biomass Valor 7:725–736CrossRefGoogle Scholar
  62. 62.
    Yentekakis IV, Goula G, Panagiotopoulou P, Kampouri S, Taylor MJ, Kyriakou G, Lambert RM (2016) Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N2O. Appl Catal B 192:357–364CrossRefGoogle Scholar
  63. 63.
    Kousi K, Chourdakis N, Matralis H, Kontarides D, Papadopoulou C, Verykios X (2016) Glycerol steam reforming over modified Ni-based catalysts. Appl Catal A 518:129–141CrossRefGoogle Scholar
  64. 64.
    Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, Goula MA (2016) Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. J Nat Gas Sci Eng 31:164–183CrossRefGoogle Scholar
  65. 65.
    Sing KSW, Everett DH, Haull RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. IUPAC 57:603–619Google Scholar
  66. 66.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic Press, MarseilleGoogle Scholar
  67. 67.
    Luisetto I, Tuti S, Battocchio C, Mastro SL, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A 500:12–22CrossRefGoogle Scholar
  68. 68.
    Jimenez-Gonzalez C, Boukha Z, de Rivas B, Delgado JJ, Cauqui MA, Gonzalez-Velasco JR, Gutierrez-Ortiz JI, Lopez-Fonseca R (2013) Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl Catal A 466:9–20CrossRefGoogle Scholar
  69. 69.
    Ren HP, Hao QQ, Wang W, Song YH, Cheng J, Liu ZW, Liu ZT, Lu J, Hao Z (2014) High-performance Ni/SiO2 for pressurized carbon dioxide reforming of methane. Int J Hydrogen Energy 39:11592–11605CrossRefGoogle Scholar
  70. 70.
    Damyanova S, Grange P, Delmon B (1997) Surface characterization of zirconia-coated alumina and silica carriers. J Catal 168:421–430CrossRefGoogle Scholar
  71. 71.
    Anderson JA, Fergusson C, Rodriguez-Ramos I, Guerrero-Ruiz A (2000) Influence of Si/Zr ratio on the formation of surface acidity in silica–zirconia aerogels. J Catal 192:344–354CrossRefGoogle Scholar
  72. 72.
    Wang Y, Wu R, Zhao Y (2010) Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases. Catal Today 158:470–474CrossRefGoogle Scholar
  73. 73.
    Qian L, Yan ZF (2002) Studies on adsorption and dissociation of methane and carbon dioxide on nickel catalyst. Fuel Chem Div Prep 47:598–602Google Scholar
  74. 74.
    Huang F, Wang R, Yang C, Driss H, Chu W, Zhang H (2016) Catalytic performance of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. J Energy Chem 25:709–719CrossRefGoogle Scholar
  75. 75.
    Montero C, Remiro A, Arandia A, Benito PL, Bilbao J, Gayubo AG (2016) Reproducible performance of a Ni/La2O3–αAl2O3 catalyst in ethanol steam reforming under reaction–regeneration cycles. Fuel Proc Technol 152:215–222CrossRefGoogle Scholar
  76. 76.
    Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. J Catal 231:159–171CrossRefGoogle Scholar
  77. 77.
    Zhao X, Lu G (2016) Improving catalytic activity and stability by in-situ regeneration of Ni-based catalyst for hydrogen production from ethanol steam reforming via controlling of active species dispersion. Int J Hydrogen Energy 41:13993–14002CrossRefGoogle Scholar
  78. 78.
    Zamzuri NH, Mat R, Amin NAS, Amin T-K (2016) Hydrogen production from catalytic steam reforming of glycerol over various supported nickel catalysts. Int J Hydrogen Energy (In Press)Google Scholar
  79. 79.
    Muroyama H, Saburi C, Matsui T, Eguchi K (2012) Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Appl Catal A 443–444:119–124CrossRefGoogle Scholar
  80. 80.
    Viinikainen T, Ronkkonen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O (2009) Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Appl Catal A 362:169–177CrossRefGoogle Scholar
  81. 81.
    Fleys M, Simon Y, Swierczynski D, Kiennemann A, Marquaire PM (2006) Investigation of the reaction of partial oxidation of methane over Ni/La2O3 catalyst. Energ Fuel 20:2321–2329CrossRefGoogle Scholar
  82. 82.
    Dou B, Dupont V, Rickett G, Blakeman N, Williams PT, Chen H, Ding Y, Ghadiri M (2009) Hydrogen production by sorption-enhanced steam reforming of glycerol. Bioresour Technol 100:3540–3547CrossRefGoogle Scholar
  83. 83.
    Dhanala V, Maity SK, Shee D (2013) Steam reforming of isobutanol for the production of synthesis gas over Ni/γ–Al2O3 catalysts. RSC Adv 3:24521–24529CrossRefGoogle Scholar
  84. 84.
    Dhanala V, Maity SK, Shee D (2015) Roles of supports (γ-Al2O3, SiO2, ZrO2) and performance of metals (Ni, Co, Mo) in steam reforming of isobutanol. RSC Adv 5:52522–52532CrossRefGoogle Scholar
  85. 85.
    Kamonsuangkasem K, Therdthianwong S, Therdthianwong A (2013) Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel Process Technol 106:695–703CrossRefGoogle Scholar
  86. 86.
    Senseni AZ, Seyed Fattahi SM, Rezaei M, Meshkani F (2016) A comparative study of experimental investigation and response surface optimization of steam reforming of glycerol over nickel nano-catalysts. Int J Hydrogen Energy 41:10178–10192CrossRefGoogle Scholar
  87. 87.
    Chen SQ, Liu Y (2009) LaFeyNi1−y O3 supported nickel catalysts used for steam reforming of ethanol. Int J Hydrogen Energy 34:4735–4746CrossRefGoogle Scholar
  88. 88.
    Li Y, Wang W, Chen B, Cao Y (2010) Thermodynamic analysis of hydrogen production via glycerol steam reforming with CO2 adsorption. Int J Hydrogen Energy 35:7768–7777CrossRefGoogle Scholar
  89. 89.
    Dave CD, Pant KK (2011) Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renew Energy 36:3195–3202CrossRefGoogle Scholar
  90. 90.
    Li S, Li M, Zhang C, Wang S, Ma X, Gong J (2012) Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution. Int J Hydrogen Energy 37:2940–2949CrossRefGoogle Scholar
  91. 91.
    Neto ASB, Oliveira AC, Filho JM, Amadeo N, Dieuzeide ML, de Sousa FF, Oliveira AC (2017) Characterizations of nanostructured nickel aluminates as catalysts for conversion of glycerol: influence of the preparation methods. Adv Powder Technol 28:131–138CrossRefGoogle Scholar
  92. 92.
    Carvalho DC, Pinheiro LG, Campos A, Millet ERC, de Sousa FF, Filho JM, Saraiva GD, da Silva Filho EC, Fonseca MG, Oliveira AC (2014) Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Appl Catal A 471:39–49CrossRefGoogle Scholar
  93. 93.
    de Oliveira AS, Vasconcelos SJS, de Sousa JR, de Sousa FF, Filho JM, Oliveira AC (2011) Catalytic conversion of glycerol to acrolein over modified molecular sieves: activity and deactivation studies. Chem Eng J 168:765–774CrossRefGoogle Scholar
  94. 94.
    Yue CJ, Gan MM, Gu LP, Zhuang YF (2014) In situ synthesized nano-copper over ZSM-5 for the catalytic dehydration of glycerol under mild conditions. J Taiwan Inst. Chem Eng 45:1443–1448CrossRefGoogle Scholar
  95. 95.
    Adhikari S, Fernando SD, Haryanto A (2009) Hydrogen production from glycerol: an update. Energy Convers Manag 50:2600–2604CrossRefGoogle Scholar
  96. 96.
    Bobadilla LF, Álvareza A, Domínguez MI, Romero-Sarria F, Centeno MA, Montes M, Odriozola JA (2012) Influence of the shape of Ni catalysts in the glycerol steam reforming. Appl Catal B 123–124:379–390CrossRefGoogle Scholar
  97. 97.
    Simonetti DA, Dumesic JA (2009) Catalytic production of liquid fuels from biomass-derived oxygenated hydrocarbons: catalytic coupling at multiple length scales. Catal Rev Sci Eng 51:441–484CrossRefGoogle Scholar
  98. 98.
    Barros FD, de Sousa HSA, Oliveira AC, Junior MC, Filho JM, Viana BC, Oliveira AC (2013) Characterization of high surface area nanocomposites for glycerol transformation: effect of the presence of silica on the structure and catalytic activity. Catal Today 212:127–136CrossRefGoogle Scholar
  99. 99.
    Zhou CH, Beltramini JN, Fan YX, Lu CQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549CrossRefGoogle Scholar
  100. 100.
    Pagliaro M, Rossi M (2008) The future of glycerol: new uses of a versatile raw material. RSC Green Chemistry Book Series, Royal Society of Chemistry, London, pp. 54–64Google Scholar
  101. 101.
    Kinage AK, Upare PP, Kasinathan P, Hwang YK, Chang JS (2010) Selective conversion of glycerol to acetol over sodium-doped metal oxide catalysts. Catal Commun 11:620–623CrossRefGoogle Scholar
  102. 102.
    Kim YT, Jung KD, Park ED (2011) Gas-phase dehydration of glycerol over silica-alumina catalysts. Appl Catal B 107:177–187CrossRefGoogle Scholar
  103. 103.
    Lourenço JP, Fernandes A, Bértolo RA, Ribeiro MF (2015) Gas-phase dehydration of glycerol over thermally-stable SAPO-40 catalyst. RSC Adv 5:10667–10674CrossRefGoogle Scholar
  104. 104.
    Suprun W, Lutecki M, Gläser R, Papp H (2011) Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol. J Mol Catal A Chem 342–343:91–100CrossRefGoogle Scholar
  105. 105.
    Lima CL, Sousa HSA, Vasconcelos SJS, Filho JM, Oliveira AC, Sousa FF, Oliveira AC (2011) Effect of sulfatation on the physicochemical and catalytic properties of molecular sieves. React Kinet Mechan Catal 102:487–500CrossRefGoogle Scholar
  106. 106.
    Miranda BC, Chimentão RJ, Santos JBO, Gispert-Guirado F, Llorca J, Medina F, López Bonillo F, Sueiras JE (2014) Conversion of glycerol over 10%Ni/c–Al2O3 catalyst. Appl Catal B 147:464–480CrossRefGoogle Scholar
  107. 107.
    Hirunsit P, Luadthong C, Faungnawakij K (2015) Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/Al2O3: combined experiment and DFT investigation. RSC Adv 5:11188–11197CrossRefGoogle Scholar
  108. 108.
    Cheng CK, Foo SY, Adesina AA (2010) Glycerol steam reforming over bimetallic Co–Ni/Al2O3. Ind Eng Chem Res 49:10804–10817CrossRefGoogle Scholar
  109. 109.
    Dou B, Dupont V, Williams PT, Chen H, Ding Y (2009) Thermogravimetric kinetics of crude glycerol. Bioresour Technol 100:2613–2620CrossRefGoogle Scholar
  110. 110.
    Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35:8912–8920CrossRefGoogle Scholar
  111. 111.
    Montini T, Singh R, Das P, Lorenzut B, Bertero N, Riello P, Benedetti A, Giambastiani G, Bianchini C, Zinoviev S, Miertus S, Fornasiero P (2010) Renewable H2 from gycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts. Chem Sus Chem 3:619–628CrossRefGoogle Scholar
  112. 112.
    Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed 45:3982–3985CrossRefGoogle Scholar
  113. 113.
    Hirai T, Ikenaga N-O, Miyake T, Suzuki T (2005) Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuel 19:1761–1762CrossRefGoogle Scholar
  114. 114.
    Bartholomew CH, Weatherbee GD, Jarvi GA (1980) Effects of carbon deposits on the specific activity of nickel and nickel bimetallic catalysts. Chem Eng Commun 5:125–134CrossRefGoogle Scholar
  115. 115.
    De Lima SM, Silva AM, Da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catal Today 138:162–168CrossRefGoogle Scholar
  116. 116.
    Wen G, Xu Y, Ma H, Xu Z, Tian Z (2008) Production of hydrogen by aqueous-phase reforming of glycerol. Int J Hydrogen Energy 33:6657–6666CrossRefGoogle Scholar
  117. 117.
    Seo JG, Youn MH, Park S, Chung JS, Song IK (2009) Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/Al2O3–ZrO2 xerogel catalysts: effect of calcination temperature of Al2O3–ZrO2 xerogel supports. Int J Hydrogen Energy 34:3755–3763CrossRefGoogle Scholar
  118. 118.
    Youn MH, Seo JG, Lee H, Bang Y, Chung JS, Song IK (2010) Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on metal oxides: effect of support acidity. Appl Catal B 98:57–64CrossRefGoogle Scholar
  119. 119.
    Azzam KG, Babich IV, Seshan K, Lefferts L (2007) Bifunctional catalysts for single-stage water–gas shift reaction in fuel cell applications: part 1. Effect of the support on the reaction sequence. J Catal 251:153–162CrossRefGoogle Scholar
  120. 120.
    Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, di Michele A (2014) Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming. Appl Catal B 150–151:257–267CrossRefGoogle Scholar
  121. 121.
    Valliyappan T, Bakhshi NN, Dalai AK (2008) Pyrolysis of glycerol for the production of hydrogen or syngas. Bioresour Technol 99:4476–4483CrossRefGoogle Scholar
  122. 122.
    Valliyappan T, Ferdous D, Bakhshi NN, Dalai AK (2008) Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Top Catal 49:59–67CrossRefGoogle Scholar
  123. 123.
    Stein YS, Antal MJ Jr, Jones M Jr (1983) A study of the gas—phase pyrolysis of glycerol. J Anal Appl Pyrolysis 4:283–296CrossRefGoogle Scholar
  124. 124.
    Araque M, Martínez LMT, Vargas JC, Roger AC (2011) Hydrogen production by glycerol steam reforming over CeZrCo fluorite type oxides. Catal Today 176:352–356CrossRefGoogle Scholar
  125. 125.
    Li J, Yu H, Yang G, Peng F, Xie D, Wang H, Yang J (2011) Steam reforming of oxygenate fuels for hydrogen production: a thermodynamic study. Energy Fuel 25:2643–2650CrossRefGoogle Scholar
  126. 126.
    Yang G, Yu H, Peng F, Wang H, Yang J, Xie D (2011) Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol. Renew Energy 36:2120–2127CrossRefGoogle Scholar
  127. 127.
    Silverwood P, Hamilton N, Staniforth J, Laycock C, Parker S, Ormerod R, Lennon D (2010) Persistent species formed during the carbon dioxide reforming of methane over a nickel–alumina catalyst. Catal Today 155:319–325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • N. D. Charisiou
    • 1
  • K. N. Papageridis
    • 1
  • G. Siakavelas
    • 1
  • L. Tzounis
    • 2
  • K. Kousi
    • 3
  • M. A. Baker
    • 4
  • S. J. Hinder
    • 4
  • V. Sebastian
    • 5
  • K. Polychronopoulou
    • 6
  • M. A. Goula
    • 1
    Email author
  1. 1.Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Environmental and Pollution Control EngineeringWestern Macedonia University of Applied SciencesKozaniGreece
  2. 2.Composite and Smart Materials Laboratory (CSML), Department of Materials Science & EngineeringUniversity of IoanninaIoanninaGreece
  3. 3.Department of ChemistryUniversity of PatrasPatrasGreece
  4. 4.The Surface Analysis Laboratory, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK
  5. 5.Chemical and Environmental Engineering Department & Nanoscience Institute of Aragon (INA)University of ZaragozaZaragozaSpain
  6. 6.Department of Mechanical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates

Personalised recommendations