Advertisement

Topics in Catalysis

, Volume 60, Issue 15–16, pp 1027–1039 | Cite as

Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study

  • Gabriel Morales
  • Jose Iglesias
  • Juan A. Melero
  • Jovita Moreno
  • Rebeca Sánchez-Vázquez
  • Ángel Peral
  • Alberto Cubo
Original Paper

Abstract

The catalytic performance of two types of heterogeneous acid catalysts—sulfonic acid-functionalized materials and aluminum containing zeolites,—in the dehydration of sorbitol to isosorbide, in solventless and autogenous pressure conditions, has been studied. Catalysts screening evidenced strong differences between sulfonic acid-based materials and acid zeolites in terms of catalytic performance. Whereas sulfonic materials, such as Amberlyst-70 and SBA-15-Pr-SO3H, showed a very high catalytic activity, zeolites with beta structure evidenced good catalytic performance together with minimized promotion of side reactions (production of non-desired sorbitans, humins, etc.). Kinetic studies performed at different temperatures, adjusting to a Langmuir–Hinshelwood type model, allowed correlating the physicochemical properties of the acid materials with their catalytic performance in sorbitol dehydration. Thus, the analysis of initial selectivity through kinetic constants comparison indicated that commercial beta zeolite with a Si/Al ratio of 19 is the most selective catalyst for the production of isosorbide, though following a slower kinetics than the sulfonic materials. Furthermore, an equivalent hierarchical beta zeolite has been synthesised and evaluated, resulting in a slight improvement of the catalytic performance, in terms of both yield and selectivity to isosorbide. This improvement is attributed to the superior textural properties.

Keywords

Isosorbide Sorbitol dehydration Acid heterogeneous catalysts Zeolites Sulfonic acid Kinetic modelling Hierarchical beta 

Notes

Acknowledgements

Financial support from Spanish Ministry of Economy and Competitiveness (Project CTQ2014-52907-R) and from the Regional Government of Madrid (Project S2013/MAE-2882) is kindly acknowledged.

Supplementary material

11244_2017_794_MOESM1_ESM.docx (425 kb)
Supplementary material 1 (DOCX 424 KB)

References

  1. 1.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 118:5285–5287CrossRefGoogle Scholar
  2. 2.
    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82–94CrossRefGoogle Scholar
  3. 3.
    Gallezot P, Cerino PJ, Blanc B, Flèche G, Fuertes P (1994) J Catal 146:93–102CrossRefGoogle Scholar
  4. 4.
    Hoffer BW, Crezee E, Mooijman PRM, van Langeveld AD, Kapteijn F, Moulijn JA (2003) Catal Today 79–80:35–41CrossRefGoogle Scholar
  5. 5.
    Zhang B, Li X, Wu Q, Zhang C, Yu Y, Lan M, Wei X, Ying Z, Liu T, Liang G, Zhao F (2016) Green Chem 18:3315–3323CrossRefGoogle Scholar
  6. 6.
    Faba F, Kusema BT, Murzina EV, Tokarev A, Kumar N, Smeds A, Díaz E, Ordóñez S, Mäki-Arvela P, Willför S, Salmi T, Murzin DY (2014) Microporous Mesoporous Mater 189:189–199CrossRefGoogle Scholar
  7. 7.
    Zhang J, Li J-B, Wu S-B, Liu Y (2013) Ind Eng Chem Res 52:11799–11815CrossRefGoogle Scholar
  8. 8.
    Rose M, Palkovits R (2012) ChemSusChem 5:167–176CrossRefGoogle Scholar
  9. 9.
    Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault J-P (2010) Progr Polym Sci 35:578–622CrossRefGoogle Scholar
  10. 10.
    Sheldon RA (2014) Green Chem 16:950–963CrossRefGoogle Scholar
  11. 11.
    Flèche G, Huchette M (1986) Starch/Stärke 38(1):26–30CrossRefGoogle Scholar
  12. 12.
    Bock K, Pedersen P, Thogersen H (1981) Acta Chem Scand B 35:441–449CrossRefGoogle Scholar
  13. 13.
    Li N, Huber GW (2010) J Catal 270:48–59CrossRefGoogle Scholar
  14. 14.
    Yang G, Pidko EA, Hensen EJM (2012) J Catal 295:122–132CrossRefGoogle Scholar
  15. 15.
    Polaert I, Felix MC, Fornasero M, Marcotte S, Buvat J-C, Estel L (2013) Chem Eng J 222:228–239CrossRefGoogle Scholar
  16. 16.
    Li J, Buijs W, Berger RJ, Moulijn JA, Makkle M (2014) Catal Sci Technol 4:152–163CrossRefGoogle Scholar
  17. 17.
    Haines AH, Wells AG (1973) Carbohydr Res 27:261–264CrossRefGoogle Scholar
  18. 18.
    Koerner TAW, Voll RJ, Younathan ES (1977) Carbohydr Res 59:403–416CrossRefGoogle Scholar
  19. 19.
    Yabushita M, Kobayashi H, Shrotri A, Hara K, Ito S, Fukuoka A (2015) Bull Chem Soc Jpn 88:996–1002CrossRefGoogle Scholar
  20. 20.
    Kurszewska M, Skorupowa E, Madaj J, Konitz A, Wojnowki W, Wiśniewski A (2002) Carbohydr Res 337:1261–1268CrossRefGoogle Scholar
  21. 21.
    Kobayashi H, Yokoyama H, Feng B, Fukuoka A (2015) Green Chem 17:2732–2735CrossRefGoogle Scholar
  22. 22.
    Otomo R, Yokoi T, Tatsumi T (2015) Appl Catal A 505:28–35CrossRefGoogle Scholar
  23. 23.
    Yamaguchi A, Sato O, Mimura N, Shirai M (2015) Catal Commun 67:59–63CrossRefGoogle Scholar
  24. 24.
    Barbaro P, Liguori F, Moreno-Marrodan C (2016) Green Chem 18:2935–2940CrossRefGoogle Scholar
  25. 25.
    Kang HY, Hwang DW, Hwang YK, Hwang J-S, Chang J-S (2013) Korean Chem Eng Res 51:189–194CrossRefGoogle Scholar
  26. 26.
    Cubo A, Iglesias J, Morales G, Melero JA, Moreno J, Sánchez-Vázquez R (2017) Appl Catal A. doi: 10.1016/j.apcata.2016.10.029 Google Scholar
  27. 27.
    Dabbawala AA, Park JJ, Valekar AH, Mishra DK, Hwang J-S (2015) Catal Commun 69:207–211CrossRefGoogle Scholar
  28. 28.
    Shi J, Shan Y, Tian Y, Wan Y, Zheng Y, Feng Y (2016) RSC Adv 6:13514–13521CrossRefGoogle Scholar
  29. 29.
    Xia J, Yu D, Hu Y, Zou B, Sun P, Li H, Huang H (2011) Catal Commun 12:544–547CrossRefGoogle Scholar
  30. 30.
    Khan NA, Mishra DK, Ahmed I, Yoon JW, Hwang J-S, Jhung SH (2013) Appl Catal A 452:34–38CrossRefGoogle Scholar
  31. 31.
    Ahmed I, Khan NA, Mishra DK, Lee JS, Hwang J-S, Jhung SH (2013) Chem Eng Sci 93:91–95CrossRefGoogle Scholar
  32. 32.
    Dabbawala AA, Mishra DK, Hwang JS (2013) Catal Commun 42:1–5CrossRefGoogle Scholar
  33. 33.
    Rusu OA, Hoelderich WF, Wyart H, Ibert M (2015) Appl Catal B 176–177:139–149CrossRefGoogle Scholar
  34. 34.
    Zhang J, Wang L, Liu F, Meng X, Mao J, Xiao F-S (2014) Catal Today 242:249–254CrossRefGoogle Scholar
  35. 35.
    Dabbawala AA, Mishra DK, Huber GW, Hwang J-S (2015) Appl Catal A 492:252–261CrossRefGoogle Scholar
  36. 36.
    Margolese D, Melero JA, Christiansen SC, Chmelka B, Stucky GD (2000) Chem Mater 12(8):2448–2459CrossRefGoogle Scholar
  37. 37.
    Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral A (2006) Chem Mater 18(10):2462–2464CrossRefGoogle Scholar
  38. 38.
    Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S., Sanz ML, Martínez-Castro I (2011) J Chromatogr B 879:1226–1240CrossRefGoogle Scholar
  39. 39.
    Schummer C, Delhomme O, Appenzeller BMR, Wenning R, Millet M (2009) Talanta 77:1473–1482CrossRefGoogle Scholar
  40. 40.
    Melero JA, Stucky GD, van Grieken R, Morales G (2002) J Mater Chem 12:1–8CrossRefGoogle Scholar
  41. 41.
    Melero JA, Iglesias J, Morales G (2013) Designing porous inorganic architectures. In: Wilson K, Lee AF (eds) Heterogeneous catalysts for clean technology: spectroscopy, design, and monitoring. Wiley, Weinheim. doi: 10.1002/9783527658985.ch8 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Gabriel Morales
    • 1
  • Jose Iglesias
    • 1
  • Juan A. Melero
    • 1
  • Jovita Moreno
    • 1
  • Rebeca Sánchez-Vázquez
    • 1
  • Ángel Peral
    • 1
  • Alberto Cubo
    • 1
  1. 1.ESCETUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations