Advertisement

Topics in Catalysis

, Volume 60, Issue 15–16, pp 1156–1170 | Cite as

Silver/Platinum Supported on TiO2 P25 Nanocatalysts for Non-photocatalytic and Photocatalytic Denitration of Water

  • Ana M. Antolín
  • Sandra Contreras
  • Francesc Medina
  • Didier Tichit
Original Paper

Abstract

Denitration of water was investigated by non-photocatalytic and/or photocatalytic processes (UV-A irradiation at 365 nm) using a mixture of Ag/P25 + Pt/P25 monometallic catalysts and Ag–Pt(Pt–Ag)/P25 bimetallic catalysts (2 wt% Ag; 4 wt% Pt) prepared by drop-wise wetness impregnation of TiO2 P25 support. In the bimetallic samples, the influences of the Pt precursor (H2PtCl6·6H2O; K2PtCl6) and of the impregnation order of the metallic salts were examined. The highest N2 yield (42.3%) in the non-photocatalytic process was achieved with the Ag/P25 + Pt/P25 mixture but with ca. 12.6% NO2 yield. Photocatalytic activity was enhanced in presence of H2 in comparison to H2-free condition. Ag/P25 is the most active photocatalyst, however high NO2 yield is obtained (32.5%). The bimetallic samples exhibit high versatility, being active both in the non-photocatalytic and the photocatalytic processes. Low NO3 conversion and high NO2 selectivity results were obtained from impregnation of Ag first. In contrast, impregnation of Pt precursor from K2PtCl6 first effectively promoted NO3 reduction towards N2 yield of 36% and particularly low NO2 yield of 2.7%, due the presence of metallic nanoparticles of different sizes and interaction with TiO2 with a peculiar strong Pt and Ag interaction. Best results obtained in non-photocatalytic and photocatalytic processes are almost similar.

Keywords

Nitrate Catalytic reduction Photocatalytic reduction Ag–Pt TiO2 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (Project CTQ2012-35789-C02-02). A.M.A. acknowledges the financial support to Universitat Rovira i Virgili, École Nationale Supérieure de Chimie de Montpellier, Eurorregión Pirineos Mediterráneo, Aplicacions Medioambientals i Industrials de la Catàlisi, Anton Dafinov and Thomas Cacciaguerra.

Supplementary material

11244_2017_793_MOESM1_ESM.docx (483 kb)
Supplementary material 1 (DOCX 482 KB)

References

  1. 1.
    S.I-No.106 (2007) European Communities Drinking Water RegulationsGoogle Scholar
  2. 2.
    Mori T, Suzuki J, Fujimoto K, Watanabe A, Hasegawal Y (1999) Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst. Appl Catal B 23:283–289CrossRefGoogle Scholar
  3. 3.
    Guillette LJ, Edwards TM (2005) Is nitrate an ecologically relevant endocrine disruptor in vertebrates? Integr Comp Biol 45:19–27CrossRefGoogle Scholar
  4. 4.
    Mahler RL, Colter A, Hirnyck R (2007) Nitrate and Groundwater. Cis pp 1–4Google Scholar
  5. 5.
    Thompson TS (2001) Nitrate concentrations in private rural drinking water supplies in Saskatchewan, Canada. Bull Environ Contam Toxicol 66:64–70CrossRefGoogle Scholar
  6. 6.
    Hörold S, Vorlop K-D, Tacke T, Sell M (1993) Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catal Today 17:21–30CrossRefGoogle Scholar
  7. 7.
    Marchesini F a., Picard N, Miró EE (2012) Study of the interactions of Pd, In with SiO2 and Al2O3 mixed supports as catalysts for the hydrogenation of nitrates in water. Catal Commun 21:9–13CrossRefGoogle Scholar
  8. 8.
    Gauthard F, Epron F, Barbier J (2003) Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water: Effect of copper, silver, or gold addition. J Catal 220:182–191CrossRefGoogle Scholar
  9. 9.
    Aristizábal A, Contreras S, Barrabés N, Llorca J, Tichit D, Medina F (2011) Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite-derived catalysts: effect of the Pt–Cu alloy formation. Appl Catal B 110:58–70CrossRefGoogle Scholar
  10. 10.
    Barrabés N, Just J, Dafinov A, Medina F, Fierro JLG, Sueiras JE, Salagre P, Cesteros Y (2006) Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor. The effect of copper nanoparticles. Appl Catal B 62:77–85CrossRefGoogle Scholar
  11. 11.
    Aristizábal A, Contreras S, Divins NJ, Llorca J, Medina F (2012) Pt–Ag/activated carbon catalysts for water denitration in a continuous reactor: Incidence of the metal loading, Pt/Ag atomic ratio and Pt metal precursor. Appl Catal B 127:351–362CrossRefGoogle Scholar
  12. 12.
    Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  13. 13.
    Ghiyasiyan-Arani M, Masjedi-Arani M, Salavati-Niasari M (2016) Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J Mol Liq 216:59–66CrossRefGoogle Scholar
  14. 14.
    Ghiyasiyan-arani M, Masjedi-arani M (2016) Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J Mol Catal A 425:31–42CrossRefGoogle Scholar
  15. 15.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  16. 16.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2—new photochemical processes. Chem Rev 106:4428–4453CrossRefGoogle Scholar
  17. 17.
    Soria J, Conesa JC, Augugliaro V, Palmisano L, Schiavello M, Sclafani A (1991) Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J Phys Chem 95:274–282CrossRefGoogle Scholar
  18. 18.
    Asahi R, Mikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible light photocatalysis in nitrogen-doped titanium oxides. Science 80(293):269–271CrossRefGoogle Scholar
  19. 19.
    Gomathi Devi L, Mohan Reddy K (2010) Enhanced photocatalytic activity of silver metallized TiO2 particles in the degradation of an azo dye methyl orange: characterization and activity at different pH values. Appl Surf Sci 256:3116–3121CrossRefGoogle Scholar
  20. 20.
    Wang G, Xu L, Zhang J, Jin T, Han D (2012) Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. Int J Photoenergy 2012:9Google Scholar
  21. 21.
    Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M (2007) Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem Eng J 127:167–176. doi: 10.1016/j.cej.2006.09.013 CrossRefGoogle Scholar
  22. 22.
    Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan N (2005) High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal 232:424–431CrossRefGoogle Scholar
  23. 23.
    Sá J, Agüera CA, Gross S, Anderson JA (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal B 85:192–200. doi: 10.1016/j.apcatb.2008.07.014 CrossRefGoogle Scholar
  24. 24.
    Barrabés N, Sá J (2011) Catalytic nitrate removal from water, past, present and future perspectives. Appl Catal B Environ 104:1–5CrossRefGoogle Scholar
  25. 25.
    Zhang F, Pi Y, Cui J, Yang Y, Zhang X, Guan N (2007) Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide. J Phys Chem C 111:3756–3761CrossRefGoogle Scholar
  26. 26.
    Doudrick K, Yang T, Hristovski K, Westerhoff P (2013) Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity. Appl Catal B 136–137:40–47CrossRefGoogle Scholar
  27. 27.
    Bems B, Jentoft FC, Schlögl R (1999) Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Appl Catal B 20:155–163CrossRefGoogle Scholar
  28. 28.
    Ranjit KT, Varadarajan T, Viswanathan B (1995) Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. J Photochem Photobiol A 89:67–68CrossRefGoogle Scholar
  29. 29.
    Ranjit KT, Viswanathan B (1997) Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catalysts. J Photochem Photobiol A 108:73–78CrossRefGoogle Scholar
  30. 30.
    Kato H, Kudo A (2002) Photocatalytic reduction of nitrate ions over tantalate photocatalysts. Phys Chem Chem Phys 4:2833–2838CrossRefGoogle Scholar
  31. 31.
    Wehbe N, Jaafar M, Guillard C, Herrmann JM, Miachon S, Puzenat E, Guilhaume N (2009) Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water. Appl Catal A 368:1–8CrossRefGoogle Scholar
  32. 32.
    Mankidy BD, Joseph B, Gupta VK (2013) Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 24:405402CrossRefGoogle Scholar
  33. 33.
    Zhang F, Miao S, Yang Y, Zhang X, Chen J, Guan N (2008) Size-dependent hydrogenation selectivity of nitrate on Pd–Cu/TiO2 catalysts. J Phys Chem 112:7665–7671Google Scholar
  34. 34.
    Sá J, Berger T, Föttinger K, Riss A, Anderson JA, Vinek H (2005) Can TiO2 promote the reduction of nitrates in water? J Catal 234:282–291CrossRefGoogle Scholar
  35. 35.
    Prüsse U, Hähnlein M, Daum J, Vorlop KD (2000) Improving the catalytic nitrate reduction. Catal Today 55:79–90CrossRefGoogle Scholar
  36. 36.
    Aristizábal A, Contreras S, Divins NJ, Llorca J, Medina F (2014) Effect of impregnation protocol in the metallic sites of Pt-Ag/activated carbon catalysts for water denitration. Appl Surf Sci 298:75–89CrossRefGoogle Scholar
  37. 37.
    Viswanathan B, Raj KJA (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem Sect A 48:1378–1382Google Scholar
  38. 38.
    Luo Z, Ibáñez M, Antolín AM, Genç A, Shavel A, Contreras S, Medina F, Arbiol J, Cabot A (2015) Size and aspect ratio control of Pd2Sn nanorods and their water denitration properties. Langmuir 31:3952–3957CrossRefGoogle Scholar
  39. 39.
    Talat-Mehrabad J, Khosravi M, Modirshahla N, Behnajady MA (2016) Synthesis, characterization, and photocatalytic activity of co-doped Ag–, Mg–TiO2-P25 by photodeposition and impregnation methods. Desalin Water Treat 57:10451–10461Google Scholar
  40. 40.
    Matos J, Marino T, Molinari R, García H (2012) Hydrogen photoproduction under visible irradiation of Au-TiO2/activated carbon. Appl Catal A 417–418:263–272CrossRefGoogle Scholar
  41. 41.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) International union of pure and applied chemistry physical chemistry division reporting physisorption data for gas/soils systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  42. 42.
    Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358CrossRefGoogle Scholar
  43. 43.
    Yu J, Ran J (2011) Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy Environ Sci 4:1364CrossRefGoogle Scholar
  44. 44.
    Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B 163:306–312CrossRefGoogle Scholar
  45. 45.
    Sclafani A, Mozzanegra MN, Herrmann JM (1997) Influence of silver deposits on the photocatalytic activity of titania. J Catal 120:117–120CrossRefGoogle Scholar
  46. 46.
    Sclafani A, Herrmann JM (1998) Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A 113:181–188CrossRefGoogle Scholar
  47. 47.
    Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:1–8Google Scholar
  48. 48.
    Kanda Y, Seino A, Kobayashi T, Kobayashi T, Uemichi Y, Sugioka M (2009) Catalytic performance of noble metals supported on mesoporous silica MCM-41 for hydrodesulfurization of benzothiophene. J Japan Pet Inst 52:42–50CrossRefGoogle Scholar
  49. 49.
    Boitiaux JP, Deves JM, Didillon B, Marcilly CR (1995) Catalytic naphtha reforming: Science and technology. Marcel Dekker, New YorkGoogle Scholar
  50. 50.
    Krejcikova S, Matejová L, Koci K, Obalováb L, Matejc Z, Capek L, Solcová O (2012) Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications. Appl Catal B 111–112:119–125CrossRefGoogle Scholar
  51. 51.
    Sobana N, Muruganadham M, Swaminathan M (2006) Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A Chem 258:124–132CrossRefGoogle Scholar
  52. 52.
    Rupa AV, Manikandan D, Divakar D, Sivakumar T (2007) Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J Hazard Mater 147:906–913CrossRefGoogle Scholar
  53. 53.
    Pulido Melián E, González Díaz O, Doña Rodríguez JM, Colón G, Navío JA, Macías M, Pérez Peña J (2012) Effect of deposition of silver on structural characteristics and photoactivity of TiO2-based photocatalysts. Appl Catal B Environ 127:112–120CrossRefGoogle Scholar
  54. 54.
    Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111CrossRefGoogle Scholar
  55. 55.
    Sowmya A, Meenakshi S (2015) Photocatalytic reduction of nitrate over Ag–TiO2 in the presence of oxalic acid. J Water Process Eng 8:e23–e30Google Scholar
  56. 56.
    Rodríguez-González V, Alfaro SO, Torres-Martínez LM, Cho SH, Lee SW (2010) Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B 98:229–234CrossRefGoogle Scholar
  57. 57.
    Paun C, Słowik G, Lewin E, Sá J (2016) Flow hydrogenation of p-nitrophenol with nano-Ag/Al2O3. RSC Adv 6:87564–87568CrossRefGoogle Scholar
  58. 58.
    Wodka D, Bielaníska E, Socha RP, Elzbieciak-Wodka M, Gurgul J, Nowak P, Warszyn ski P, Kumakiri I (2010) Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl Mater Interfaces 2:1945–1953CrossRefGoogle Scholar
  59. 59.
    Ohtani B, Iwai K, Nishimoto S, Sato S (1997) Role of platinum deposits on titanium (IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. Society 101:3349–3359Google Scholar
  60. 60.
    Ou HH, Lo SL (2007) Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. J Mol Catal A 275:200–205CrossRefGoogle Scholar
  61. 61.
    Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S (2006) Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts. J Catal 240:114–125CrossRefGoogle Scholar
  62. 62.
    Nanba T, Masukawa S, Uchisawa J, Obuchi A (2012) Influence of TiO2 crystal structure on acrylonitrile decomposition over Ag/TiO2. Appl Catal A 419–420:49–52CrossRefGoogle Scholar
  63. 63.
    Wagstaff N, Prins R (1979) Alloy formation and metal oxide segregation in PtRe/γ-AlO catalysts as investigated by temperature-programmed reduction. J Catal 59:434–445CrossRefGoogle Scholar
  64. 64.
    Doudrick K, Monzón O, Mangonon A, Hristovski K, Westerhoff P (2012) Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100). J Environ Eng 138:852–861CrossRefGoogle Scholar
  65. 65.
    Epron F, Gauthard F, Pinéda C, Barbier J (2001) Catalytic reduction of nitrate and nitrite on Pt–Cu/Al2O3 catalysts in aqueous solution: role of the interaction between copper and platinum in the reaction. J Catal 198:309–318CrossRefGoogle Scholar
  66. 66.
    Soares OSGP, Pereira MFR, Órfão JJM, Faria JL, Silvia CG (2014) Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chem Eng J 251:123–130CrossRefGoogle Scholar
  67. 67.
    Gekko H, Hashimoto K, Kominami H (2012) Photocatalytic reduction of nitrite to dinitrogen in aqueous suspensions of metal-loaded titanium (iv) oxide in the presence of a hole scavenger: an ensemble effect of silver and palladium co-catalysts. Phys Chem Chem Phys 14:7965CrossRefGoogle Scholar
  68. 68.
    Kobwittaya K, Sirivithayapakorn S (2014) Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. J Saudi Chem Soc 18:291–298CrossRefGoogle Scholar
  69. 69.
    Hirayama J, Kondo H, Miura YK, Abe R, Kamiya Y (2012) Highly effective photocatalytic system comprising semiconductor photocatalyst and supported bimetallic non-photocatalyst for selective reduction of nitrate to nitrogen in water. Catal Commun 20:99–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departament d’Enginyeria QuímicaUniversitat Rovira i Virgili, Campus Sescelades. AvdaTarragonaSpain
  2. 2.Equipe MACSInstitut Charles Gerhardt, ENSCMMontpellier Cedex 5France

Personalised recommendations