Topics in Catalysis

, Volume 60, Issue 1–2, pp 13–29 | Cite as

Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

  • Anita Godiksen
  • Peter N. R. Vennestrøm
  • Søren B. Rasmussen
  • Susanne Mossin
Original Paper


Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR on copper ion exchanged into a CHA zeolite with Si/Al = 14 ± 1 to obtain Cu/Al = 0.46 ± 0.02. The results shed light on the identity of different copper species present after activation in air. Since the EPR signal is quantifiable, the content of the different EPR active species has been elucidated and Cu2+ in 2Al positions in the 6-membered rings (6mr) of the CHA structure has been characterized. Some copper species are found not to give an EPR signal at ambient or high temperatures. Fortunately, treatments with different gasses under in situ conditions are able to trigger an EPR signal and thus reveal information about the reactivity and the quantity of some of the otherwise EPR silent species. In this way the [Cu–OH]+ species in copper substituted low-Al zeolites has been indirectly observed and quantified. EPR active Cu2+ species have been followed under reduction and oxidation with gas mixtures relevant for the selective catalytic reduction of NO with NH3 (NH3-SCR) revealing that all Cu2+ in 6mr are easily reduced and oxidized at 200 °C. Furthermore, a stable [Cu–NO3]+ species is identified in Cu-CHA after exposure to NO and O2, but is not stable in 2Al 6mr sites of the CHA structure under the applied conditions.


Environmental catalysis Selective catalytic reduction Cu-CHA In situ spectroscopy Electron paramagnetic resonance 



This work was financially supported by the Danish Independent Research Council DFF—1335-00175. The Carlsberg Foundation is acknowledged for supporting the upgrade of the EPR instrument at DTU Chemistry.


  1. 1.
    Gao F, Kwak JH, Szanyi J, Peden CHF (2013) Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top Catal 56:1441–1459CrossRefGoogle Scholar
  2. 2.
    Beale AM, Gao F, Lezcano-Gonzalez I et al (2015) Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405CrossRefGoogle Scholar
  3. 3.
    Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM (2013) Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS Catal 3:413–427CrossRefGoogle Scholar
  4. 4.
    EU Commission (2011) Commission Regulation (EU) No 582/2011 of 25 May 2011. Off J Eur Union L 167: 1Google Scholar
  5. 5.
    Meier WM, Olson DH, Baerlocher C (1996) Atlas of zeolite structure types. Zeolites 17:1–230CrossRefGoogle Scholar
  6. 6.
    Iwamoto M, Hamada H (1991) Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal Today 10:57–71CrossRefGoogle Scholar
  7. 7.
    Kwak JH, Tonkyn RG, Kim DH et al (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190CrossRefGoogle Scholar
  8. 8.
    Janssens TVW, Falsig H, Lundegaard LF et al (2015) A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal 5:2832–2845CrossRefGoogle Scholar
  9. 9.
    Paolucci C, Verma A, Bates S et al (2014) isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13. Angew Chem Int Ed 53:11828–11833CrossRefGoogle Scholar
  10. 10.
    Gao F, Walter ED, Kollar M et al (2014) Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J Catal 319:1–14CrossRefGoogle Scholar
  11. 11.
    Giordanino F, Vennestrøm PNR, Lundegaard LF et al (2013) Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans 42:12741–12761CrossRefGoogle Scholar
  12. 12.
    Godiksen A, Stappen FN, Vennestrøm PNR et al (2014) Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance. J Phys Chem C 118:23126–23138CrossRefGoogle Scholar
  13. 13.
    Andersen CW, Bremholm M, Vennestrøm PNR et al (2014) Location of Cu 2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method. IUCrJ 1:382–386CrossRefGoogle Scholar
  14. 14.
    Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55CrossRefGoogle Scholar
  15. 15.
    Addison AW, Yokoi H (1977) Spectroscopic and redox properties of pseudotetrahedral copper (II) complexes. Their relationship to copper proteins. Inorg Chem 16:1341–1349CrossRefGoogle Scholar
  16. 16.
    Peisach J, Blumberg WE (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys 165:691–708CrossRefGoogle Scholar
  17. 17.
    Sakaguchi U, Addison AW (1979) Spectroscopic and redox studies of some copper(II) Complexes with bio- mimetic donor atoms : implications for protein copper centres. J Chem Soc Dalton Trans 4:600–608CrossRefGoogle Scholar
  18. 18.
    Carl PJ, Larsen SC (2000) EPR study of copper-exchanged zeolites: effects of correlated g- and A-strain, Si/Al ratio, and parent zeolite. J Phys Chem B 104:6568–6575CrossRefGoogle Scholar
  19. 19.
    Carl PJ, Larsen SC (1999) Variable-temperature electron paramagnetic resonance studies of copper-exchanged zeolites. J Catal 182:208–218CrossRefGoogle Scholar
  20. 20.
    Öpik U, Pryce MHL (1957) Jahn–Teller effect. I. A survey of the static problem. Proc R Soc Lond A 238:425–447CrossRefGoogle Scholar
  21. 21.
    Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc Lond A 161:220–235CrossRefGoogle Scholar
  22. 22.
    Bendix J (2004) Ligfield. Compr Coord Chem 2:673–676Google Scholar
  23. 23.
    Piligkos S, Bendix J, Weihe H et al (2008) A ligand-field study of the ground spin-state magnetic anisotropy in a family of hexanuclear Mn(III) single-molecule magnets. Dalton Trans 17:2277–2284CrossRefGoogle Scholar
  24. 24.
    Broser I, Schulz M (1969) Elektronenspinresonanz an Kupferdozierten ZnO-Einkristallen. Solid State Commun 7:651–655CrossRefGoogle Scholar
  25. 25.
    Narayana M, Kevan L (1983) Detection of a new trigonal bipyramidal copper species in Cu–CaX zeolite by electron spin resonance and electron spin echo modulation analysis. J Chem Phys 78:3573–3578CrossRefGoogle Scholar
  26. 26.
    Vanelderen P, Vancauwenbergh J, Sels BF, Schoonheydt RA (2013) Coordination chemistry and reactivity of copper in zeolites. Coord Chem Rev 257:483–494CrossRefGoogle Scholar
  27. 27.
    Dědeček J, Kaucký D, Wichterlová B (2000) Co2+ ion siting in pentasil-containing zeolites, part 3. Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study. Micropor Mesopor Mater 35–36:483–494Google Scholar
  28. 28.
    Conesa JC, Soria J (1979) Electron spin resonance of copper-exchanged Y zeolites. J Chem Soc Faraday Trans 1(75):291–293Google Scholar
  29. 29.
    Nicula A, Stamires D, Turkevich J (1965) Paramagnetic resonance absorption of copper ions in porous crystals. J Chem Phys 42:3684–3692CrossRefGoogle Scholar
  30. 30.
    Kucherov A, Gerlock J (1994) In situ determination by esr of the oxidation state of copper in Cu-ZSM-5 in flowing He and O2 up to 500 °C. J Phys Chem 98:4892–4894CrossRefGoogle Scholar
  31. 31.
    Kucherov AV, Slinkin AA (1989) Change of Cu(II) cation coordination in H-ZSM-5 channels upon the sorption of n-hexane and xenon: ESR spectroscopic evidence. J Phys Chem 93:864–867CrossRefGoogle Scholar
  32. 32.
    Gao F, Walter ED, Karp EM et al (2013) Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J Catal 300:20–29CrossRefGoogle Scholar
  33. 33.
    Larsen SC, Aylor A, Bell AT, Reimer JA (1994) Electron paramagnetic resonance studies of copper ion-exchanged ZSM-5. J Phys Chem 98:11533–11540CrossRefGoogle Scholar
  34. 34.
    Anderson MW, Kevan L (1987) Study of Cu2+-doped zeolite NaH-ZSM-5 by electron spin resonance and electron spin echo modutation spectroscopies. J Phys Chem 91:4174–4179CrossRefGoogle Scholar
  35. 35.
    Kucherov A, Gerlock J, Jen H, Shelef M (1995) In situ esr monitoring of the coordination and oxidation states of copper in Cu-ZSM-5 up to 500 °C in flowing gas mixtures: 1. Interaction with He, O2, NO, NO2 and H2O. Zeolites 15:9–14CrossRefGoogle Scholar
  36. 36.
    Pierloot K, Delabie A, Groothaert MH, Schoonheydt RA (2001) A reinterpretation of the EPR spectra of Cu(II) in zeolites A, Y and ZK4, based on ab initio cluster model calculations. Phys Chem Chem Phys 3:2174–2183CrossRefGoogle Scholar
  37. 37.
    Vanelderen P, Vancauwenbergh J, Tsai M-L et al (2014) Spectroscopy and redox chemistry of copper in mordenite. ChemPhysChem 15:91–99CrossRefGoogle Scholar
  38. 38.
    Oliva C, Selli E, Ponti A et al (1997) FTIR and EPR characterisation of copper-exchanged mordenites and beta zeolites. J Chem Soc Faraday Trans 93:2603–2608CrossRefGoogle Scholar
  39. 39.
    Borfecchia E, Lomachenko KA, Giordanino F et al (2015) Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem Sci 6:548–563CrossRefGoogle Scholar
  40. 40.
    Shwan S, Skoglundh M, Lundegaard LF et al (2014) Solid-state ion-exchange of copper into zeolites facilitated by ammonia at low temperature. ACS Catal 5:16–19CrossRefGoogle Scholar
  41. 41.
    Yu J-S, Kevan L (1990) Temperature dependence of copper(II) migration and formation of new copper(II) species during catalytic propylene oxidation on copper(II)-exchanged Y zeolite and comparison with X zeolite. J Phys Chem 94:7612–7620CrossRefGoogle Scholar
  42. 42.
    Seo SM, Lim WT, Seff K (2012) Crystallographic verification that copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely Cu2+ exchanged zeolite Y (FAU, Si/Al = 1.56). J Phys Chem C 116:963–974CrossRefGoogle Scholar
  43. 43.
    Deka U, Eilertsen EA, Emerich H et al (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818CrossRefGoogle Scholar
  44. 44.
    Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Identification of Cu(II) coordination structures in Cu-ZSM-5, based on a DFT/ab initio assignment of the EPR spectra. Phys Chem Chem Phys 5:2135–2144CrossRefGoogle Scholar
  45. 45.
    De Tavernier S, Schoonheydt RA (1991) Coordination of Cu2+ in synthetic mordenites. Zeolites 11:155–163CrossRefGoogle Scholar
  46. 46.
    Kucherov AV, Slinkin AA, Kondrat’ev DA et al (1985) Cu2+-cation location and reactivity in mordenite and ZSM-5: esr-study. Zeolites 5:320–324CrossRefGoogle Scholar
  47. 47.
    Bates SA, Verma AA, Paolucci C et al (2014) Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J Catal 312:87–97CrossRefGoogle Scholar
  48. 48.
    Göltl F, Bulo RE, Sautet P (2013) What makes copper-exchanged SSZ-13 zeolite efficient at cleaning car exhaust gases? J Phys Chem Lett 4:2244–2249CrossRefGoogle Scholar
  49. 49.
    Göltl F, Sautet P, Hermans I (2016) The impact of finite temperature on the coordination of Cu cations in the zeolite SSZ-13. Catal Today 267:41–46CrossRefGoogle Scholar
  50. 50.
    Delabie A, Pierloot K, Groothaert MH et al (2001) The siting of Cu(II) in mordenite: a theoretical spectroscopic study. Phys Chem Chem Phys 4:134–145CrossRefGoogle Scholar
  51. 51.
    Moreno-González M, Hueso B, Boronat M et al (2015) Ammonia-containing species formed in Cu-chabazite as per in situ EPR, solid-state NMR, and DFT calculations. J Phys Chem Lett 6:1011–1017CrossRefGoogle Scholar
  52. 52.
    Packet D, Dehertogh W, Schoonheydt RA (1985) Spectroscopy of Cu(II) coordinated to lattice oxygens in zeolites. In: Drzaj B, Hocevar S, Pevojnik S (eds) Zeolites: synthesis, structure, technology, and application. Elsevier, Amsterdam, pp 351–358Google Scholar
  53. 53.
    Schoonheydt RA (1993) Transition metal ions in zeolites: siting and energetics of Cu2+. Catal Rev 35:129–168CrossRefGoogle Scholar
  54. 54.
    LoJacono M, Fierro G, Dragone R et al (1997) Zeolite chemistry of CuZSM-5 revisited. J Phys Chem B 5647:1979–1984CrossRefGoogle Scholar
  55. 55.
    Conesa JC, Soria J (1978) Electron spin resonance of undetected copper(II) ions in Y zeolite. J Phys Chem 82:1847–1850CrossRefGoogle Scholar
  56. 56.
    Valyon J, Hall WK (1993) On the preparation and properties of CuZSM-5 catalysts for NO decomposition. Catal Lett 19:109–119CrossRefGoogle Scholar
  57. 57.
    Verma AA, Bates SA, Anggara T et al (2014) NO oxidation: a probe reaction on Cu-SSZ-13. J Catal 312:179–190CrossRefGoogle Scholar
  58. 58.
    Gao F, Wang Y, Washton NM et al (2015) Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH 3 -SCR catalysts. ACS Catal 5:6780–6791CrossRefGoogle Scholar
  59. 59.
    Günter T, Carvalho H, Doronkin DE et al (2015) Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chem Commun 51:9227–9230CrossRefGoogle Scholar
  60. 60.
    Kieger S, Delahay G, Coq B, Neveu B (1999) Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere. J Catal 183:267–280CrossRefGoogle Scholar
  61. 61.
    Kwak JH, Lee JH, Burton SD et al (2013) A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes. Angew Chem Int Ed Engl 52:9985–9989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anita Godiksen
    • 1
  • Peter N. R. Vennestrøm
    • 2
  • Søren B. Rasmussen
    • 2
  • Susanne Mossin
    • 1
  1. 1.Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Haldor Topsøe A/SKgs. LyngbyDenmark

Personalised recommendations