Topics in Catalysis

, Volume 60, Issue 1–2, pp 141–151 | Cite as

Steady-State CO Oxidation on Pd(111): First-Principles Kinetic Monte Carlo Simulations and Microkinetic Analysis

  • Simone Piccinin
  • Michail Stamatakis
Original Paper


Using a kinetic Monte Carlo (KMC) approach with parameters derived from first-principles calculations, we modeled the steady-state of CO oxidation on Pd(111), a prototypical catalytic system with various practical applications, including the treatment of automotive gas exhausts. Focusing on the metallic phase of the catalyst, we studied how the rate of CO oxidation depends on temperature and pressure, at fixed gas phase composition. Comparing the results of our simulations with experimental data, we found that all the qualitative features of this catalytic system are correctly reproduced by our model. We show that, when raising the temperature, the system transitions from a CO-poisoned regime with high apparent activation energy to a regime where the rate is almost independent of the temperature. The almost zero apparent activation energy at high temperature stems from approximately equal and opposite values of the O2 adsorption energy and dissociation barrier, as revealed by a simple microkinetic analysis. In the CO-poisoned regime, the precursor-mediated dissociative adsorption of oxygen plays a crucial role: we find that small changes (within DFT error) in the parameters controlling this elementary step have large effects on the kinetics of CO oxidation at low temperature.


Kinetic Monte Carlo CO oxidation Pd(111) DFT 



S. P. acknowledges the CNR 2013 Short Term Mobility Program for partial financial support. The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), and associated support services, in the completion of the computational part of this work.

Supplementary material

11244_2016_725_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1771 kb)


  1. 1.
    Engel T, Ertl G (1978) J Chem Phys 69:1267–1281CrossRefGoogle Scholar
  2. 2.
    Klikovits J, Napetschnig E, Schmid M, Seriani N, Dubay O, Kresse G, Varga P (2007) Phys Rev B 76:045405CrossRefGoogle Scholar
  3. 3.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229–242CrossRefGoogle Scholar
  4. 4.
    Chen MS, Cal Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Surf Sci 601:5326–5331CrossRefGoogle Scholar
  5. 5.
    Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70CrossRefGoogle Scholar
  6. 6.
    Hoffmann MJ, Scheffler M, Reuter K (2015) Acs Catal 5:1199–1209CrossRefGoogle Scholar
  7. 7.
    Gabasch H, Knop-Gericke A, Schlogl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klotzer B (2007) Phys Chem Chem Phys 9:533–540CrossRefGoogle Scholar
  8. 8.
    Duan ZY, Henkelman G (2014) Acs Catal 4:3435–3443CrossRefGoogle Scholar
  9. 9.
    Rogal J, Reuter K, Scheffler M (2008) Phys Rev B 77:155410CrossRefGoogle Scholar
  10. 10.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerstrom R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Phys Chem Chem Phys 13:13167–13171CrossRefGoogle Scholar
  11. 11.
    Stamatakis M (2013) Zacros: advanced lattice-KMC simulation made easy. Accessed 2 Oct 2016
  12. 12.
    Stamatakis M, Vlachos DG (2011) J Chem Phys 134:214115-214111–214115-214113CrossRefGoogle Scholar
  13. 13.
    Nielsen J, d’Avezac M, Hetherington J, Stamatakis M (2013) J Chem Phys 139:224706-224701–224706-224713Google Scholar
  14. 14.
    Piccinin S, Stamatakis M (2014) Acs Catal 4:2143–2152CrossRefGoogle Scholar
  15. 15.
    Stamatakis M, Piccinin S (2016) Acs Catal 6:2105–2111CrossRefGoogle Scholar
  16. 16.
    Reuter K, Scheffler M (2006) Phys Rev B 73:045433CrossRefGoogle Scholar
  17. 17.
    Stamatakis M, Vlachos DG (2012) Acs Catal 2:2648–2663CrossRefGoogle Scholar
  18. 18.
    Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) J Phys Chem C 112:4608–4617CrossRefGoogle Scholar
  19. 19.
    Brønsted JN (1928) Chem Rev 5:231–338CrossRefGoogle Scholar
  20. 20.
    Evans MG, Polanyi M (1938) Trans Faraday Soc 34:0011–0023CrossRefGoogle Scholar
  21. 21.
    Wu C, Schmidt DJ, Wolverton C, Schneider WF (2012) J Catal 286:88–94CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  23. 23.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  24. 24.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys-Condens Mat 21:395502CrossRefGoogle Scholar
  25. 25.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  26. 26.
    Piccinin S, Stampfl C (2010) Phys Rev B 81:155427CrossRefGoogle Scholar
  27. 27.
    Luntz AC, Williams MD, Bethune DS (1988) J Chem Phys 89:4381–4396CrossRefGoogle Scholar
  28. 28.
    Yates JT, Thiel PA, Weinberg WH (1979) Surf Sci 82:45–68CrossRefGoogle Scholar
  29. 29.
    Davis JE, Nolan PD, Karseboom SG, Mullins CB (1997) J Chem Phys 107:943–952CrossRefGoogle Scholar
  30. 30.
    Imbihl R, Demuth JE (1986) Surf Sci 173:395–410CrossRefGoogle Scholar
  31. 31.
    Sjovall P, Uvdal P (1998) Chem Phys Lett 282:355–360CrossRefGoogle Scholar
  32. 32.
    Falsig H, Hvolbaek B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Norskov JK (2008) Angew Chem Int Ed 47:4835–4839CrossRefGoogle Scholar
  33. 33.
    McEwen JS, Bray JM, Wu C, Schneider WF (2012) Phys Chem Chem Phys 14:16677–16685CrossRefGoogle Scholar
  34. 34.
    Pogodin S, Lopez N (2014) Acs Catal 4:2328–2332CrossRefGoogle Scholar
  35. 35.
    Getman RB, Schneider WF, Smeltz AD, Delgass WN, Ribeiro FH (2009) Phys Rev Lett 102:076101CrossRefGoogle Scholar
  36. 36.
    Eichler A, Mittendorfer F, Hafner J (2000) Phys Rev B 62:4744–4755CrossRefGoogle Scholar
  37. 37.
    Honkala K, Laasonen K (2001) J Chem Phys 115:2297–2302CrossRefGoogle Scholar
  38. 38.
    Carbogno C, Gross A, Meyer J, Reuter K (2003) In: Muino RD, Busnengo HF (eds) Dynamics of gas-surface interactions: atomic-level understanding of scattering processes at surfaces, vol 50. Springer Series in Surface Science, BerlinGoogle Scholar
  39. 39.
    Gross A, Eichler A, Hafner J, Mehl MJ, Papaconstantopoulos DA (2003) Surf Sci 539:L542–L548CrossRefGoogle Scholar
  40. 40.
    Schimka L, Harl J, Stroppa A, Gruneis A, Marsman M, Mittendorfer F, Kresse G (2010) Nat Mater 9:741–744CrossRefGoogle Scholar
  41. 41.
    Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077–8082CrossRefGoogle Scholar
  42. 42.
    Boudart M, Rumpf F (1987) React Kinet Catal L 35:95–105CrossRefGoogle Scholar
  43. 43.
    Xu XP, Goodman DW (1993) J Phys Chem-US 97:7711–7718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CNR-IOM DEMOCRITOS c/o SISSATriesteItaly
  2. 2.Department of Chemical EngineeringUniversity College LondonLondonUK

Personalised recommendations