Topics in Catalysis

, Volume 60, Issue 1–2, pp 83–109 | Cite as

Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures

  • H. Stotz
  • L. Maier
  • O. DeutschmannEmail author
Original Paper


A kinetic modeling study on methane oxidation over reduced Pd for various fuel-rich conditions around the stoichiometric point of the partial oxidation at high temperatures (900–1100 K) is presented. A thermodynamically consistent detailed surface reaction mechanism is developed within the mean field approximation. The proposed kinetic model consists of 54 elementary-step based reactions including seven gas-phase species and 15 surface intermediates. Three different methane activation paths are implemented, comprising pyrolytic C–H bond dissociation steps, oxygen-assisted and dual-oxygen-assisted CH4 activation. In situ experimental measurements in a quasi-autothermally operated flow reactor, using the capillary sampling technique, are performed for model evaluation. The provided experimental data includes spatially resolved temperature and concentration profiles within a single catalytic channel of a Pd/Al2O3-coated monolith. Supplementary numerical simulations based on literature data for fuel-lean and fuel-rich conditions at high temperatures extend the model’s capability to predict a wide range of different experimental conditions.


Catalytic methane oxidation Palladium In situ measurements Surface reaction mechanism Microkinetic modeling 



Open width of square channel (m)


Active catalytic surface area (m2)


Cross-sectional area of square channel (m2)


Geometric surface area (m2)


Pre-exponential factor of forward direction in step k (mol, cm, s)


Pre-exponential factor of reaction step k (mol, cm, s)


Pre-exponential factor for an adsorption reaction in step k (mol, cm, s)


Initial pre-exponential factor (mol, cm, s)


Perturbed pre-exponential factor (mol, cm, s)


Pre-exponential factor of reverse direction in step k (mol, cm, s)


Equilibrium concentration of species i (mol/m3)


Concentration of species i at channel-washcoat interface (mol/m3)


Reference concentration for species i (mol, cm)


Mean molar specific heat capacity of surface species i (J/mol-K)


Mean particle size for palladium (m)


Diameter of circular channel (m)


Mixture averaged diffusivity of species i in mixture M (m2/s)


Catalyst dispersion for palladium


Effective diffusivity of species i in the washcoat (m2/s)


Second Damköhler-number of species i


Activation energy of reaction step k (J/mol)


Activation energy of forward direction in step k (J/mol)


Activation energy of reverse direction in step k (J/mol)


Ratio of catalytic to geometric surface area


Molar specific Gibbs free energy of species i (J/mol)


Molar specific Gibbs free energy of species i at reference conditions (J/mol)


Mixture specific enthalpy of gas-phase (J/kg)


Planck’s constant (J-s)


Specific enthalpy of species i (J/kg)


Molar specific enthalpy of species i (J/mol)


Species indices


Radial diffusive flux (kg/m2-s)


Reaction indices


Boltzmann’s constant (J/K)


Forward rate constant of setp k (mol, cm, s)


Reverse rate constant of step k (mol, cm, s)


Pseudo first-order rate constant (mol/kg-s-Pa)


Concentration based equilibrium constant of reaction step k (mol, cm)


Total number of surface reactions


Length of catalytic monolith/channel (m)


Length of catalytic foil (m)


Monolitic catalyst loading for palladium (kg/m3)


Monolitic washcoat loading (kg/m3)


Molecular weight of species i (kg/mol)


Molecular weight of palladium (kg/mol)


Mixture averaged molecular weight (kg/mol)


Molecularity of reaction step k


Number of channels


Total number of gas-phase species


Total number of surface species


Pressure (Pa)


Partial pressure of species i (Pa)


Inlet pressure of catalytic channel (Pa)


Standard state pressure (Pa)


Concentration based reaction quotient of step k (mol, cm)


Reference concentration based reaction quotient of step k (mol, cm)


Radial channel coordinate (m)


Rate of reaction on surface of step k (mol/m2-s)


Channel radius (m)


Universal gas-constant (J/mol-K)


Reynold’s number based on channel length L


Repeat distance of monolith cell (m)


Initial sticking coefficient


Molar rate of production/consumption of species i (mol/m2-s)


Pore transport corrected molar rate of production/consumption of species i (mol/m2-s)


Activation entropy of reaction step k (J/mol-K)


Molar specific entropy of species i (J/mol-K)


Sensitivity coefficient of reaction step k for species i


Normalized sensitivity coefficient of step k for species i


Schmidt’s number


Time (s)


Temperature (K)


Gas-phase temperature (K)


Inlet temperature of catalytic channel (K)


Reference temperature (K)


Standard state temperature (K)

\(T_{{_{\text{ad}} }}^{{^{\text{out}} }}\)

Adiabatic outlet temperature (K)

\(T_{{_{ \exp } }}^{{^{\text{in}} }}\)

Experimentally measured channel inlet temperature (K)

\(T_{{_{ \exp } }}^{{^{\text{out}} }}\)

Experimentally measured channel outlet temperature (K)


Axial velocity component (m/s)


Channel inlet velocity (m/s)


Radial velocity component (m/s)


Volume of a single channel (m3)


Standard state volume flow (m3/s)


Weight fraction of palladium on catalyst (%)


Initial mole fraction of species i


Mole fraction of species i after pertubation


Mass-fraction of species i in gas-phase


Axial channel coordiante (m)


Reversibility of reaction step k


Parameter for temperature dependence on pre-exponential factor


Surface site density of palladium (mol/m2)


Wall thickness (m)


Average washcoat thickness (m)


Effective washcoat thickness (m)


Gibbs free energy of reaction step k (J/mol)


Heat of reaction step k (J/mol)


Entropy of reaction step k (J/mol-K)


Perturbation parameter


Parameter for coverage dependent activation energy (J/mol)


Washcoat porosity


Washcoat effectiveness factor


Washcoat effectiveness factor of species i


Thermal reactor efficiency


External effectiveness factor of species i


Surface coverage of species i


Reference surface coverage of species i


Mixture heat conductivity


Mixture dynamic viscosity


Stoichiometric coefficient species i in reaction step k


Stoichiometric coefficient species i in forward step k


Stoichiometric coefficient species i in backward step k


Density (kg/m3)


Average washcoat density (kg/m3)


Site occupation number of species i


Thiele modulus of species i


Name of species i



The authors deeply thank Prof. G. Groppi, Prof. A. Beretta and Prof. M. Maestri from Politecnico di Milano (Italy) for fruitful discussions and Dr. S. Colussi from Università di Udine (Italy) for sharing data on PdO–Pd transformation. Furthermore, the authors acknowledge Dr. C. Antinori and A. Ünal from Karlsruhe Institute of Technology (Germany) for technical support during in situ profile measurements. Financial support by the Helmholtz Research School Energy Related Catalysis is gratefully acknowledged. The authors also thank Dr. M. Votsmeier from UMICORE AG & Co KG for providing the catalyst.


  1. 1.
    Armor JN (2014) Catal Today 236:171–181CrossRefGoogle Scholar
  2. 2.
    Karion A, Sweeney C, Pétron G, Frost G, Michael Hardesty R, Kofler J, Miller BR, Newberger T, Wolter S, Banta R, Brewer A, Dlugokencky E, Lang P, Montzka SA, Schnell R, Tans P, Trainer M, Zamora R, Conley S (2013) Geophys Res Lett 40:4393–4397CrossRefGoogle Scholar
  3. 3.
    Abbasi R, Huang G, Istratescu GM, Wu L, Hayes RE (2015) Can J Chem Eng 93:1474–1482CrossRefGoogle Scholar
  4. 4.
    Choudhary T, Banerjee S, Choudhary V (2002) Appl Catal A 234:1–23CrossRefGoogle Scholar
  5. 5.
    Aryafar M, Zaera F (1997) Catal Lett 48:173–183CrossRefGoogle Scholar
  6. 6.
    Maillet T, Solleau C, Barbier J, Duprez D (1997) Appl Catal B 14:85–95CrossRefGoogle Scholar
  7. 7.
    Burch R, Loader PK, Urbano FJ (1996) Catal Today 27:243–248CrossRefGoogle Scholar
  8. 8.
    Gremminger AT, de Carvalho HWP, Popescu R, Grunwaldt J, Deutschmann O (2015) Catal Today 258:470–480CrossRefGoogle Scholar
  9. 9.
    Gélin P, Primet M (2002) Appl Catal B 39:1–37CrossRefGoogle Scholar
  10. 10.
    Anderson RB, Stein KC, Feenan JJ, Hofer LJE (1961) Ind Eng Chem 53:809–812CrossRefGoogle Scholar
  11. 11.
    Lu Y, Kumar MS, Chiarello GL, Eggenschwiler PD, Bach C, Weilenmann M, Spiteri A, Weidenkaff A, Ferri D (2013) Catal Commun 39:55–59CrossRefGoogle Scholar
  12. 12.
    Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2005) J Phys Chem B 109:2331–2337CrossRefGoogle Scholar
  13. 13.
    Forzatti P, Groppi G (1999) Catal Today 54:165–180CrossRefGoogle Scholar
  14. 14.
    Graham GW, König D, Poindexter BD, Remillard JT, Weber WH (1999) Top Catal 8:35–43CrossRefGoogle Scholar
  15. 15.
    Burch R (1997) Catal Today 35:27–36CrossRefGoogle Scholar
  16. 16.
    Centi G (2001) J Molec Catal A 173:287–312CrossRefGoogle Scholar
  17. 17.
    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catal Rev 44:593–649CrossRefGoogle Scholar
  18. 18.
    Chin Y, Resasco DE (1999) Catalysis 14:1–39CrossRefGoogle Scholar
  19. 19.
    Li Z, Hoflund GB (2003) J Nat Gas Chem 12:153–160Google Scholar
  20. 20.
    Wen-Ge Liu, De-Yong Guo, Xin Xu (2012) J China Pet Process & Petrochem Technol 14:1–9Google Scholar
  21. 21.
    Xin Y, Wang H, Law CK (2014) Combust Flame 161:1048–1054CrossRefGoogle Scholar
  22. 22.
    Colussi S, Trovarelli A, Vesselli E, Baraldi A, Comelli G, Groppi G, Llorca J (2010) Appl Catal A 390:1–10CrossRefGoogle Scholar
  23. 23.
    Chin YC, Buda C, Neurock M, Iglesia E (2013) J Am Chem Soc 135:15425–15442CrossRefGoogle Scholar
  24. 24.
    Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2004) J Am Chem Soc 126:9896–9897CrossRefGoogle Scholar
  25. 25.
    Au-Yeung J (1999) J Catal 188:132–139CrossRefGoogle Scholar
  26. 26.
    Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227–237CrossRefGoogle Scholar
  27. 27.
    Monteiro R, Zemlyanov D, Storey J, Ribeiro F (2001) J Catal 201:37–45CrossRefGoogle Scholar
  28. 28.
    Kimmerle B, Baiker A, Grunwaldt J (2010) Phys Chem Chem Phys 12:2288–2291CrossRefGoogle Scholar
  29. 29.
    McCarty JG (1995) Catal. Today 26:283–293CrossRefGoogle Scholar
  30. 30.
    Groppi G, Artioli G, Cristiani C, Lietti L, Forzatti P (2001) In: Natural Gas Conversion VI, vol 136. ElsevierGoogle Scholar
  31. 31.
    Chen X, Schwank JW, Fisher GB, Cheng Y, Jagner M, McCabe RW, Katz MB, Graham GW, Pan X (2014) Appl Catal A 475:420–426CrossRefGoogle Scholar
  32. 32.
    Diehm C, Deutschmann O (2014) Int J Hydrogen Energy 39:17998–18004CrossRefGoogle Scholar
  33. 33.
    Livio D, Diehm C, Donazzi A, Beretta A, Deutschmann O (2013) Appl Catal A 467:530–541CrossRefGoogle Scholar
  34. 34.
    Bugosh GS, Easterling VG, Rusakova IA, Harold MP (2015) Appl Catal B 165:68–78CrossRefGoogle Scholar
  35. 35.
    Beretta A, Donazzi A, Livio D, Maestri M, Groppi G, Tronconi E, Forzatti P (2011) Catal Today 171:79–83CrossRefGoogle Scholar
  36. 36.
    Sá J, Fernandes DLA, Aiouache F, Goguet A, Hardacre C, Lundie D, Naeem W, Partridge WP, Stere C (2010) Analyst 135:2260–2272CrossRefGoogle Scholar
  37. 37.
    Horn R, Williams K, Degenstein N, Schmidt L (2006) J Catal 242:92–102CrossRefGoogle Scholar
  38. 38.
    Schwarz H, Geske M, Goldsmith CF, Schlögl R, Horn R (2014) Combust Flame 161:1688–1700CrossRefGoogle Scholar
  39. 39.
    Touitou J, Morgan K, Burch R, Hardacre C, Goguet A (2012) Catal Sci Technol 2:1811–1813CrossRefGoogle Scholar
  40. 40.
    Hannemann S, Grunwaldt J, Kimmerle B, Baiker A, Boye P, Schroer C (2009) Top Catal 52:1360–1370CrossRefGoogle Scholar
  41. 41.
    Geske M, Korup O, Horn R (2013) Catal Sci Technol 3:169–175CrossRefGoogle Scholar
  42. 42.
    Karadeniz H, Karakaya C, Tischer S, Deutschmann O (2015) Zeitschrift für Physikalische Chemie 229:709–737CrossRefGoogle Scholar
  43. 43.
    Zhu H, Kee RJ, Engel JR, Wickham DT (2007) P Combust Inst 31:1965–1972CrossRefGoogle Scholar
  44. 44.
    Korup O, Schlögl R, Horn R (2012) Catal Today 181:177–183CrossRefGoogle Scholar
  45. 45.
    Blomberg S, Brackmann C, Gustafson J, Aldén M, Lundgren E, Zetterberg J (2015) ACS Catal 5:2028–2034CrossRefGoogle Scholar
  46. 46.
    Zellner A, Suntz R, Deutschmann O (2015) Angew Chem Int Ed 54:2653–2655CrossRefGoogle Scholar
  47. 47.
    Mantzaras J (2013) Flow Turbul Combust 90:681–707CrossRefGoogle Scholar
  48. 48.
    Eriksson S, Schneider A, Mantzaras J, Wolf M, JärÅs S (2007) Chem Eng Sci 62:3991–4011CrossRefGoogle Scholar
  49. 49.
    Hettel M, Diehm C, Bonart H, Deutschmann O (2015) Catal Today 258:230–240CrossRefGoogle Scholar
  50. 50.
    Hettel M, Diehm C, Torkashvand B, Deutschmann O (2013) Catal Today 216:2–10CrossRefGoogle Scholar
  51. 51.
    Goguet A, Partridge WP, Aiouche F, Hardacre C, Morgan K, Stere C, Sá J (2014) Catal Today 236:206–208CrossRefGoogle Scholar
  52. 52.
    Hettel M, Diehm C, Deutschmann O (2014) Catal Today 236:209–213CrossRefGoogle Scholar
  53. 53.
    O. Deutschmann, S. Tischer, S. Kleditzsch, V. M. Janardhanan, C. Correa, D. Chatterjee, N. Mladenov, H. D. Minh, H. Karadeniz, M. Hettel (2014) DETCHEM Software package, Karlsruhe, GermanyGoogle Scholar
  54. 54.
    Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47–60CrossRefGoogle Scholar
  55. 55.
    Deutschmann O, Schmidt LD (1998) AIChE J 44:2465–2477CrossRefGoogle Scholar
  56. 56.
    Deuflhard P, Hairer E, Zugck J (1987) Numer Math 51:501–516CrossRefGoogle Scholar
  57. 57.
    Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Sharma RK, Cresswell DL, Newson EJ (1991) Ind Eng Chem Res 30:1428–1433CrossRefGoogle Scholar
  59. 59.
    Dittmeyer R, Emig G (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  60. 60.
    Bergeret G, Gallezot P (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  61. 61.
    Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  62. 62.
    Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431–442CrossRefGoogle Scholar
  63. 63.
    Monteiro R, Zemlyanov D, Storey J, Ribeiro F (2001) J Catal 199:291–301CrossRefGoogle Scholar
  64. 64.
    Ciuparu D, Bozon-Verduraz F, Pfefferle L (2002) J Phys Chem B 106:3434–3442CrossRefGoogle Scholar
  65. 65.
    Lyubovsky M, Pfefferle L (1999) Catal Today 47:29–44CrossRefGoogle Scholar
  66. 66.
    Chin YC, Buda C, Neurock M, Iglesia E (2011) J Am Chem Soc 133:15958–15978CrossRefGoogle Scholar
  67. 67.
    Cortright RD, Dumesic JA (2001) In: Advances in Catalysis, vol 46. Academic Press, San DiegoGoogle Scholar
  68. 68.
    Zhdanov VP (1991) Surf Sci Rep 12:185–242CrossRefGoogle Scholar
  69. 69.
    Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119CrossRefGoogle Scholar
  70. 70.
    Groppi G, Cristiani C, Lietti L, Forzatti P (2000) Stud Surf Sci Catal 130:3801–3806CrossRefGoogle Scholar
  71. 71.
    Delgado K, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O (2015) Catalysts 5:871–904CrossRefGoogle Scholar
  72. 72.
    Valden M, Pere J, Hirsimäki M, Suhonen S, Pessa M (1997) Surf Sci 377–379:605–609CrossRefGoogle Scholar
  73. 73.
    Hirsimäki M, Paavilainen S, Nieminen J, Valden M (2001) Surf Sci 482–485:171–176CrossRefGoogle Scholar
  74. 74.
    Hirsimäki M, Valden M (2004) Surf Sci 562:284CrossRefGoogle Scholar
  75. 75.
    Tait SL, Dohnálek Z, Campbell CT, Kay BD (2005) Surf Sci 591:90–107CrossRefGoogle Scholar
  76. 76.
    Trinchero A, Hellman A, Grönbeck H (2013) Surf Sci 616:206–213CrossRefGoogle Scholar
  77. 77.
    Salanov AN, Suprun EA (2009) Kinet Catal 50:31–39CrossRefGoogle Scholar
  78. 78.
    Milun M, Pervan P, Wandelt K (1989) Surf Sci 218:363–388CrossRefGoogle Scholar
  79. 79.
    Conrad H, Ertl G, Küppers J, Latta EE (1977) Surf Sci 65:245–260CrossRefGoogle Scholar
  80. 80.
    Salanov AN, Titkov AI, Bibin VN (2006) Kinet Catal 47:430–436CrossRefGoogle Scholar
  81. 81.
    Szanyi J, Kuhn WK, Goodman DW (1993) J Vac Sci Technol A 11:1969–1974CrossRefGoogle Scholar
  82. 82.
    Conrad H, Ertl G, Koch J, Latta EE (1974) Surf Sci 43:462–480CrossRefGoogle Scholar
  83. 83.
    Behm RJ, Christmann K, Ertl G, Van Hove MA (1980) J Chem Phys 73:2984–2995CrossRefGoogle Scholar
  84. 84.
    Tracy JC (1969) J Chem Phys 51:4852–4862CrossRefGoogle Scholar
  85. 85.
    Yeo YY, Vattuone L, King DA (1997) J Chem Phys 106:1990–1996CrossRefGoogle Scholar
  86. 86.
    Engel T (1978) J Chem Phys 69:373–385CrossRefGoogle Scholar
  87. 87.
    Behm R, Christmann K, Ertl G (1980) Surf Sci 99:320–340CrossRefGoogle Scholar
  88. 88.
    Voogt E, Coulier L, Gijzeman O, Geus J (1997) J Catal 169:359–364CrossRefGoogle Scholar
  89. 89.
    Guo X, Yates JT (1989) J Chem Phys 90:6761–6766CrossRefGoogle Scholar
  90. 90.
    Bowker M, Stone P, Bennett R, Perkins N (2002) Surf Sci 497:155–165CrossRefGoogle Scholar
  91. 91.
    Dropsch H, Baerns M (1997) Appl Catal A 158:163–183CrossRefGoogle Scholar
  92. 92.
    Huang S, Lin C, Wang J (2010) J Phys Chem C 114:9826–9834CrossRefGoogle Scholar
  93. 93.
    Christmann K (1991) In: Baumgärtel H, Franck EU, Grünbein W (eds) Topics in Physical Chemistry. Steinkopff Verlag; Springer-Verlag, Darmstadt, New YorkGoogle Scholar
  94. 94.
    Cattania MG, Penka V, Behm RJ, Christmann K, Ertl G (1983) Surf Sci 126:382–391CrossRefGoogle Scholar
  95. 95.
    Gdowski GE, Felter TE, Stulen RH (1987) Surf Sci 181:L147CrossRefGoogle Scholar
  96. 96.
    Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435–446CrossRefGoogle Scholar
  97. 97.
    Aldag A, Schmidt L (1971) J Catal 22:260–265CrossRefGoogle Scholar
  98. 98.
    Greeley J, Mavrikakis M (2005) J Phys Chem B 109:3460–3471CrossRefGoogle Scholar
  99. 99.
    Conrad H (1976) Wechselwirkung von Gasen mit einer Pd(111)-Oberfläche: PhD thesis, Universität München, MünchenGoogle Scholar
  100. 100.
    Stuve EM, Jorgensen SW, Madix RJ (1984) Surf Sci 146:179–198CrossRefGoogle Scholar
  101. 101.
    Clay JP, Greeley JP, Ribeiro FH, Delgass WN, Schneider WF (2014) J Catal 320:106–117CrossRefGoogle Scholar
  102. 102.
    Thiel PA, Madey TE (1987) Surf Sci Rep 7:211–385CrossRefGoogle Scholar
  103. 103.
    Heras J, Estiú G, Viscido L (1997) Appl Surf Sci 108:455–464CrossRefGoogle Scholar
  104. 104.
    Hodgson A, Haq S (2009) Surf Sci Rep 64:381–451CrossRefGoogle Scholar
  105. 105.
    Phatak AA, Delgass WN, Ribeiro FH, Schneider WF (2009) J Phys Chem C 113:7269–7276CrossRefGoogle Scholar
  106. 106.
    Liu T, Snyder C, Veser G (2007) Ind Eng Chem Res 46:9045–9052CrossRefGoogle Scholar
  107. 107.
    Maestri M (2012) In: Pignataro B (ed) New strategies in chemical synthesis and catalysis. Wiley-VCH, WeinheimGoogle Scholar
  108. 108.
    Peuckert M (1985) J Phys Chem 89:2481–2486CrossRefGoogle Scholar
  109. 109.
    Bayer G, Wiedemann HG (1975) Thermochim Acta 11:79–88CrossRefGoogle Scholar
  110. 110.
    Bell WE, Inyard RE, Tagami M (1966) J Phys Chem 70:3735–3736CrossRefGoogle Scholar
  111. 111.
    Salomonsson P, Johansson S, Kasemo B (1995) Catal Lett 33:1–13CrossRefGoogle Scholar
  112. 112.
    Warner JS (1967) J Electrochem Soc 114:68–71CrossRefGoogle Scholar
  113. 113.
    Tarasov AL, Kustov LM (2013) Catal Ind 5:14–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Catalysis Research and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations