Topics in Catalysis

, Volume 60, Issue 6–7, pp 440–445 | Cite as

Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

  • Michael A. HendersonEmail author
  • Mingmin Shen
Original paper


The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ at oxygen vacancy sites (VO) are readily oxidized by the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface bridging OH (OHb) groups to form hydroquinone (HQ), which desorbs at ~450 K. The ability of BQ to scavenge electrons from TiO2 also accounts for the formation of coupling products that accumulate on the surface as very stable carbon deposits, likely as polymerized aromatics.


Benzoquinone Rutile TiO2(110) Temperature programmed desorption Electron scavenging Photocatalysis 



This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.


  1. 1.
    Henderson MA (2011) Surf Sci Rep 66:185CrossRefGoogle Scholar
  2. 2.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33CrossRefGoogle Scholar
  3. 3.
    Tatsuma T, Tachibana S, Fujishima A (2001) J Phys Chem B 105:6987CrossRefGoogle Scholar
  4. 4.
    Mills A, Hodgen S, Lee SK (2005) Res Chem Intermed 31:295CrossRefGoogle Scholar
  5. 5.
    Theurich J, Lindner M, Bahnemann DW (1996) Langmuir 12:6368CrossRefGoogle Scholar
  6. 6.
    Yamazaki S, Fujiwara Y, Yabuno S, Adachi K, Honda K (2012) Appl Catal B-Environ 121:148CrossRefGoogle Scholar
  7. 7.
    Silva AMT, Silva CG, Drazic G, Faria JL (2009) Catal Today 144:13CrossRefGoogle Scholar
  8. 8.
    Richard C, Boule P (1994) New J Chem 18:547Google Scholar
  9. 9.
    Al-Sayyed G, D’Oliveira J-C, Pichat P (1991) J Photochem Photobiol A 58:99CrossRefGoogle Scholar
  10. 10.
    Mills A, Morris S, Davies R (1993) J Photochem Photobiol 70:183CrossRefGoogle Scholar
  11. 11.
    Sobczynski A, Duczmal L, Zmudzinski W (2004) J Mol Catal 213:225CrossRefGoogle Scholar
  12. 12.
    Wang XQ, So L, Su R, Wendt S, Hald P, Mamakhel A, Yang CX, Huang YD, Iversen BB, Besenbacher F (2014) J Catal 310:100CrossRefGoogle Scholar
  13. 13.
    Ilisz I, Dombi A (1999) Appl Catal 180:35CrossRefGoogle Scholar
  14. 14.
    Pelizzetti E, Minero C, Borgarello E, Tinucci L, Serpone N (1993) Langmuir 9:2995CrossRefGoogle Scholar
  15. 15.
    Teoh WY, Madler L, Amal R (2007) J Catal 251:271CrossRefGoogle Scholar
  16. 16.
    d’Hennezel O, Pichat P, Ollis DF (1998) J Photochem Photobiol 118:197CrossRefGoogle Scholar
  17. 17.
    Fu QA, Yang JL, Wang XB (2011) J Phys Chem A 115:3201CrossRefGoogle Scholar
  18. 18.
    Cooper CD, Naff WT, Compton RN (1975) J Chem Phys 63:2752CrossRefGoogle Scholar
  19. 19.
    Holroyd RA (1982) J Phys Chem 86:3541CrossRefGoogle Scholar
  20. 20.
    Heinis T, Chowdhury S, Scott SL, Kebarle P (1988) J Am Chem Soc 110:400CrossRefGoogle Scholar
  21. 21.
    Chowdhury S, Heinis T, Grimsrud EP, Kebarle P (1986) J Phys Chem 90:2747CrossRefGoogle Scholar
  22. 22.
    Richard C (1994) New J Chem 18:443Google Scholar
  23. 23.
    Makhal A, Sarkar S, Bora T, Baruah S, Dutta J, Raychaudhuri AK, Pal SK (2010) J Phys Chem C 114:10390CrossRefGoogle Scholar
  24. 24.
    Idriss H, Barteau MA (1994) Langmuir 10:3693CrossRefGoogle Scholar
  25. 25.
    Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) J Chem B 107:534CrossRefGoogle Scholar
  26. 26.
    Zehr RT, Henderson MA (2008) Surf Sci 602:1507CrossRefGoogle Scholar
  27. 27.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  28. 28.
    Stanton JF, Sattelmeyer KW, Gauss J, Allan M, Skalicky T, Bally T (2001) J Chem Phys 115:1CrossRefGoogle Scholar
  29. 29.
    Li SC, Wang JG, Jacobson P, Gong XQ, Selloni A, Diebold U (2009) J Am Chem Soc 131:980CrossRefGoogle Scholar
  30. 30.
    Henderson MA, White JM, Uetsuka H, Onishi H (2003) J Am Chem Soc 125:14974CrossRefGoogle Scholar
  31. 31.
    Henderson MA, Shen MM, Wang ZT, Lyubinetsky I (2013) J Phys Chem C 117:5774CrossRefGoogle Scholar
  32. 32.
    Allan M (1984) Chem Phys 84:311CrossRefGoogle Scholar
  33. 33.
    Bigelow RW (1978) J Chem Phys 68:5086CrossRefGoogle Scholar
  34. 34.
    Trommsdorff HP (1967) Chem Phys Lett 1:214CrossRefGoogle Scholar
  35. 35.
    Terhorst G, Kommandeur J (1979) Chem Phys 44:287CrossRefGoogle Scholar
  36. 36.
    Trommsdorff HP (1971) Chem Phys Lett 10:176CrossRefGoogle Scholar
  37. 37.
    Trommsdorff HP (1972) J Chem Phys 56:5358CrossRefGoogle Scholar
  38. 38.
    Pou-Amerigo R, Merchan M, Orti E (1999) J Chem Phys 110:9536CrossRefGoogle Scholar
  39. 39.
    Honda Y, Hada M, Ehara M, Nakatsuji H (2002) J Phys Chem A 106:3838CrossRefGoogle Scholar
  40. 40.
    Zhao XJ, Imahori H, Zhan CG, Sakata Y, Iwata S, Kitagawa T (1997) J Phys Chem A 101:622CrossRefGoogle Scholar
  41. 41.
    Zamadar M, Cook AR, Lewandowska-Andralojc A, Holroyd R, Jiang Y, Bikalis J, Miller JR (2013) J Phys Chem A 117:8360CrossRefGoogle Scholar
  42. 42.
    Barone V, Improta R, Morelli G, Santoro F (2007) Theoret Chem Acc 118:143CrossRefGoogle Scholar
  43. 43.
    Cheng HY, Huang YS (2014) Phys Chem Chem Phys 16:26306CrossRefGoogle Scholar
  44. 44.
    Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922CrossRefGoogle Scholar
  45. 45.
    Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:7654CrossRefGoogle Scholar
  46. 46.
    Kimmel GA, Petrik NG (2008) Phys Rev Lett 100:196102CrossRefGoogle Scholar
  47. 47.
    Epling WS, Peden CHF, Henderson MA, Diebold U (1998) Surf Sci 412(13):333CrossRefGoogle Scholar
  48. 48.
    Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U (1999) J Phys Chem B 103:5328CrossRefGoogle Scholar
  49. 49.
    Shen MM, Henderson MA (2012) J Phys Chem C 116:18788CrossRefGoogle Scholar
  50. 50.
    Henderson MA (1996) Surf Sci 355:151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  1. 1.Physical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Rive TechnologyMonmouth JunctionUSA

Personalised recommendations