Advertisement

Topics in Catalysis

, Volume 60, Issue 6–7, pp 481–491 | Cite as

Energy Level Shifts at the Silica/Ru(0001) Heterojunction Driven by Surface and Interface Dipoles

  • Mengen Wang
  • Jian-Qiang Zhong
  • John Kestell
  • Iradwikanari Waluyo
  • Dario J. Stacchiola
  • J. Anibal Boscoboinik
  • Deyu Lu
Article

Abstract

Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here we carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. The same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.

Keywords

2D zeolites Charge transfer Surface and interface dipoles Energy level shift Density functional theory In situ X-ray photoelectron spectroscopy 

Notes

Acknowledgments

Research carried out in part at the Center for Functional Nanomaterials and at the CSX-2 beamline of the National Synchrotron Light Source II, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. J.Q Zhong and M. Wang are supported by BNL LDRD Project No. 15-010. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Helpful discussions with Per Hyldgaard concerning the vdW-DF-cx functional are gratefully acknowledged.

Supplementary material

11244_2016_704_MOESM1_ESM.docx (307 kb)
Supplementary material 1 (DOCX 307 kb)

References

  1. 1.
    Min BK, Santra AK, Goodman DW (2003) Catal Today 85(2–4):113–124CrossRefGoogle Scholar
  2. 2.
    Büchner C, Lichtenstein L, Stuckenholz S, Heyde M, Ringleb F, Sterrer M, Kaden WE, Giordano L, Pacchioni G, Freund H-J (2014) J Phys Chemi C 118(36):20959–20969CrossRefGoogle Scholar
  3. 3.
    Shaikhutdinov S, Freund H-J (2013) Adv Mater 25(1):49–67CrossRefGoogle Scholar
  4. 4.
    Boscoboinik JA, Shaikhutdinov S (2014) Catal Lett 144(12):1987–1995CrossRefGoogle Scholar
  5. 5.
    Weissenrieder J, Kaya S, Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ, Sierka M, Todorova TK, Sauer J (2005) Phys Rev Lett 95(7):076103CrossRefGoogle Scholar
  6. 6.
    Stacchiola D, Kaya S, Weissenrieder J, Kuhlenbeck H, Shaikhutdinov S, Freund H-J, Sierka M, Todorova TK, Sauer J (2006) Angew Chem Int Ed 45(45):7636–7639CrossRefGoogle Scholar
  7. 7.
    Kundu M, Murata Y (2002) Appl Phys Lett 80(11):1921–1923CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Jiang Z, Yao Y, Tan D, Fu Q, Bao X (2008) Thin Solid Films 516(12):3741–3746CrossRefGoogle Scholar
  9. 9.
    Yang B, Kaden WE, Yu X, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Wlodarczyk R, Sierka M, Sauer J, Shaikhutdinov S, Freund H-J (2012) Phys Chem Chem Phys 14(32):11344–11351CrossRefGoogle Scholar
  10. 10.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Angew Chem Int Ed 51(24):6005–6008CrossRefGoogle Scholar
  11. 11.
    Emmez E, Yang B, Shaikhutdinov S, Freund H-J (2014) J Phys Chem C 118(50):29034–29042CrossRefGoogle Scholar
  12. 12.
    Zhong J-Q, Kestell J, Waluyo I, Wilkins S, Mazzoli C, Barbour A, Kaznatcheev K, Shete M, Tsapatsis M, Boscoboinik JA (2016) J Phys Chem C 120(15):8240–8245CrossRefGoogle Scholar
  13. 13.
    Emmez E, Boscoboinik JA, Tenney S, Sutter P, Shaikhutdinov S, Freund H-J (2016) Surf Sci 646:19–25CrossRefGoogle Scholar
  14. 14.
    Schlexer P, Pacchioni G, Włodarczyk R, Sauer J (2016) Surf Sci 648:2–9CrossRefGoogle Scholar
  15. 15.
    Eichelbaum M, Hävecker M, Heine C, Wernbacher AM, Rosowski F, Trunschke A, Schlögl R (2015) Angew Chem Int Ed 54(10):2922–2926CrossRefGoogle Scholar
  16. 16.
    Włodarczyk R, Sierka M, Sauer J, Löffler D, Uhlrich JJ, Yu X, Yang B, Groot IMN, Shaikhutdinov S, Freund HJ (2012) Physical Review B 85(8):085403CrossRefGoogle Scholar
  17. 17.
    Kestell JD, Zhong J-Q, Shete M, Waluyo I, Sadowski JT, Stacchiola DJ, Tsapatsis M, Boscoboinik JA (2016) Catalysis Today. doi: 10.1016/j.cattod.2016.07.015
  18. 18.
    Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  20. 20.
    Berland K, Hyldgaard P (2014) Phys Rev B 89(3):035412CrossRefGoogle Scholar
  21. 21.
    Bjorkman T (2014) J Chem Phys 141(7):074708CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  24. 24.
    Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83(19):195131CrossRefGoogle Scholar
  25. 25.
    Klimes J, Bowler DR, Michaelides A (2010) J Phys 22(2):022201Google Scholar
  26. 26.
    Grimme S (2006) J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  27. 27.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104CrossRefGoogle Scholar
  28. 28.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456–1465CrossRefGoogle Scholar
  29. 29.
    Neugebauer J, Scheffler M (1992) Phys Rev B 46(24):16067CrossRefGoogle Scholar
  30. 30.
    Janak JF (1978) Phys Rev B 18(12):7165CrossRefGoogle Scholar
  31. 31.
    Göransson C, Olovsson W, Abrikosov IA (2005) Phys Rev B 72(13):134203CrossRefGoogle Scholar
  32. 32.
    Lindroos M, Pfnür H, Held G, Menzel D (1989) Surf Sci 222(2–3):451–463CrossRefGoogle Scholar
  33. 33.
    Pfnür H, Held G, Lindroos M, Menzel D (1989) Surf Sci 220(1):43–58CrossRefGoogle Scholar
  34. 34.
    Kostov KL, Gsell M, Jakob P, Moritz T, Widdra W, Menzel D (1997) Surf Sci 394(1–3):L138–L144CrossRefGoogle Scholar
  35. 35.
    Stampfl C, Schwegmann S, Over H, Scheffler M, Ertl G (1996) Phys Rev Lett 77(16):3371–3374CrossRefGoogle Scholar
  36. 36.
    Löffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Büchner C, Heyde M, Shaikhutdinov S, Freund HJ, Włodarczyk R, Sierka M, Sauer J (2010) Phys Rev Lett 105(14):146104CrossRefGoogle Scholar
  37. 37.
    Włodarczyk R, Sierka M, Sauer J, Löffler D, Uhlrich JJ, Yu X, Yang B, Groot IMN, Shaikhutdinov S, Freund HJ (2012) Phys Rev B 85(8):085403CrossRefGoogle Scholar
  38. 38.
    Klemm HW, Peschel G, Madej E, Fuhrich A, Timm M, Menzel D, Schmidt T, Freund HJ (2016) Surf Sci 643:45–51CrossRefGoogle Scholar
  39. 39.
    Blume R, Christen W, Niehus H (2006) J Phys Chem B 110(28):13912–13919CrossRefGoogle Scholar
  40. 40.
    Wendt S, Ozensoy E, Wei T, Frerichs M, Cai Y, Chen MS, Goodman DW (2005) Phys Rev B 72(11):115409CrossRefGoogle Scholar
  41. 41.
    Bagus PS, Staemmler V, Wöll C (2002) Phys Rev Lett 89(9):096104CrossRefGoogle Scholar
  42. 42.
    Kim YD, Seitsonen AP, Wendt S, Wang J, Fan C, Jacobi K, Over H, Ertl G (2001) J Phys Chem B 105(18):3752–3758CrossRefGoogle Scholar
  43. 43.
    Zhong J-Q, Qin X, Zhang J-L, Kera S, Ueno N, Wee ATS, Yang J, Chen W (2014) ACS Nano 8(2):1699–1707CrossRefGoogle Scholar
  44. 44.
    Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W (2015) ACS Nano 9(10):10313–10323CrossRefGoogle Scholar
  45. 45.
    Khomyakov PA, Giovannetti G, Rusu PC, Brocks Gv, Van den Brink J, Kelly PJ (2009) Phys Rev 79(19):195425CrossRefGoogle Scholar
  46. 46.
    Stadtmüller B, Lüftner D, Willenbockel M, Reinisch EM, Sueyoshi T, Koller G, Soubatch S, Ramsey MG, Puschnig P, Tautz FS, Kumpf C (2014) Nat Commun 5Google Scholar
  47. 47.
    Hofmann OT, Rangger GM, Zojer E (2008) J Phys Chem C 112(51):20357–20365CrossRefGoogle Scholar
  48. 48.
    Monti OLA, Steele MP (2010) Phys Chem Chem Phys 12(39):12390–12400CrossRefGoogle Scholar
  49. 49.
    Wold DJ, Haag R, Rampi MA, Frisbie CD (2002) J Phys Chem B 106(11):2813–2816CrossRefGoogle Scholar
  50. 50.
    Greiner MT, Helander MG, Tang W-M, Wang Z-B, Qiu J, Lu Z-H (2012) Nat Mater 11(1):76–81CrossRefGoogle Scholar
  51. 51.
    Bruening M, Cohen R, Guillemoles JF, Moav T, Libman J, Shanzer A, Cahen D (1997) J Am Chem Soc 119(24):5720–5728CrossRefGoogle Scholar
  52. 52.
    Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund H-J (2013) J Phys Chem C 117(26):13547–13556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • Mengen Wang
    • 1
    • 2
  • Jian-Qiang Zhong
    • 1
  • John Kestell
    • 1
  • Iradwikanari Waluyo
    • 3
  • Dario J. Stacchiola
    • 1
  • J. Anibal Boscoboinik
    • 1
  • Deyu Lu
    • 1
  1. 1.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  2. 2.Materials Science and Engineering DepartmentStony Brook UniversityStony BrookUSA
  3. 3.Photon Science Division, National Synchrotron Light Source IIBrookhaven National LaboratoryUptonUSA

Personalised recommendations