Topics in Catalysis

, Volume 60, Issue 6–7, pp 382–391 | Cite as

Understanding Structure and Stability of Monoclinic Zirconia Surfaces from First-Principles Calculations

  • Andrey S. Bazhenov
  • Karoliina Honkala
Original Paper


Under the water-rich pre-treatment and/or reaction conditions, structure and chemistry of the monoclinic zirconia surfaces are strongly influenced by oxygen vacancies and incorporated water. Here, we report a combined first-principles and atomistic thermodynamics study on the structure and stability of selected surfaces of the monoclinic zirconia. Our results indicate that among the studied surfaces, the most stable (\({\overline{1}}11\)) surface is the least vulnerable towards oxygen vacancies in contrast to the less stable (011) and (\({\overline{1}}01\)) surfaces, where formation of oxygen vacancies is energetically more favorable. Furthermore, we present a vigorous, systematic screening of water incorporation onto the studied surfaces. We observe that the greatest stabilization of the surfaces is achieved when a part of the adsorbed water molecules is dissociated. Nevertheless, the importance of water dissociation for achieving the greatest stabilization is high for the less stable (011) and (\({\overline{1}}01\)) surfaces, while completely hydrated (\({\overline{1}}11\)) surface is stabilized equally regardless of the water dissociation state. Analysis of the constructed phase diagrams reveals that the (\({\overline{1}}11\)) surface remains preferably clean and the (011) and (\({\overline{1}}01\)) surfaces have dissociated water at low coverage under the reactive conditions of \(T = 600\)–900 K and \(p({\mathrm {H}}_{2}{\mathrm {O}}) < 1\) bar. Upon temperature decrease and/or pressure increase, all studied surfaces gradually uptake water until fully hydrated. All in all, our findings complement and broaden the existing picture of the structure and stability of the monoclinic zirconia surfaces under the pre-treatment and/or reaction conditions, enabling rationalization of the potential roles of zirconia as a heterogeneous support and a catalyst component.


Heterogeneous catalysis Oxide support Reforming Water–gas shift Density functional theory calculations Atomistic thermodynamics Phase diagrams 



We gratefully acknowledge the financial support from the Academy of Finland (Grant 277222). Electronic structure calculations were made possible through the use of computational resources provided by the CSC-IT Center for Science in Espoo, Finland ( We thank Dr. Jaana Kanervo and Prof. Leon Lefferts for fruitful discussions.

Supplementary material

11244_2016_701_MOESM1_ESM.pdf (315 kb)
(PDF 316 kb)


  1. 1.
    NIST-JANAF thermochemical tables (2013) Accessed 25 May 2016
  2. 2.
    Chauke HR, Murovhi P, Ngoepe PE, de Leeuw NH, Grau-Crespo R (2010) Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J Phys Chem C 114:15403–15409. doi: 10.1021/jp103181q CrossRefGoogle Scholar
  3. 3.
    Chen HT, Chang JG (2010) Oxygen vacancy formation and migration in Ce\(_{1-x}\)Zr\(_{x}\)O\(_{2}\) catalyst: a DFT+U calculation. J Chem Phys 132(214):702. doi: 10.1063/1.3429314 Google Scholar
  4. 4.
    Contreras JL, Salmones J, Colín-Luna JA, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H\(_{2}\) production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853. doi: 10.1016/j.ijhydene.2014.08.072 CrossRefGoogle Scholar
  5. 5.
    Ding H, Virkar AV, Liu F (2012) Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ion 215:16–23. doi: 10.1016/j.ssi.2012.03.014 CrossRefGoogle Scholar
  6. 6.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(253):202. doi: 10.1088/0953-8984/22/25/253202 Google Scholar
  7. 7.
    Foster AS, Sulimov VB, Gejo FL, Shluger AL, Nieminen RM (2001) Structure and electrical levels of point defects in monoclinic zirconia. Phys Rev B 64(224):108. doi: 10.1103/PhysRevB.64.224108 Google Scholar
  8. 8.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270. doi: 10.1016/j.surfrep.2007.03.002 CrossRefGoogle Scholar
  9. 9.
    Graf PO, Mojet BL, van Ommen JG, Lefferts L (2007) Comparative study of steam reforming of methane, ethane and ethylene on Pt, Rh and Pd supported on yttrium-stabilized zirconia. Appl Catal A 332:310–317. doi: 10.1016/j.apcata.2007.08.032 CrossRefGoogle Scholar
  10. 10.
    Graf PO, Mojet BL, Lefferts L (2008) Influence of potassium on the competition between methane and ethane in steam reforming over Pt supported on yttrium-stabilized zirconia. Appl Catal A 346:90–95. doi: 10.1016/j.apcata.2008.05.010 CrossRefGoogle Scholar
  11. 11.
    Han Y, Zhu J (2013) Surface science studies on the zirconia-based model catalysts. Top Catal 56:1525–1541. doi: 10.1007/s11244-013-0156-5 CrossRefGoogle Scholar
  12. 12.
    Harju H, Lehtonen J, Lefferts L (2015) Steam- and autothermal-reforming of \(n\)-butanol over Rh/ZrO\(_{2}\) catalyst. Catal Today 244:47–57. doi: 10.1016/j.cattod.2014.08.013 CrossRefGoogle Scholar
  13. 13.
    Harju H, Lehtonen J, Lefferts L (2016) Steam reforming of \(n\)-butanol over Rh/ZrO\(_{2}\) catalyst: role of 1-butene and butyraldehyde. Appl Catal B 182:33–46. doi: 10.1016/j.apcatb.2015.09.009 CrossRefGoogle Scholar
  14. 14.
    Hoang TMC, Rao NK, Lefferts L, Seshan K (2015) Investigation of Ce–Zr oxide-supported Ni catalysts in the steam reforming of meta-cresol as a model component for bio-derived tar. ChemCatChem 7:468–478. doi: 10.1002/cctc.201402857 CrossRefGoogle Scholar
  15. 15.
    Ignatchenko A, Nealon DG, Dushane R, Humphries K (2006) Interaction of water with titania and zirconia surfaces. J Mol Catal A 256:57–74. doi: 10.1016/j.molcata.2006.04.031 CrossRefGoogle Scholar
  16. 16.
    Ignatchenko AV (2011) Density functional theory study of carboxylic acids adsorption and enolization on monoclinic zirconia surfaces. J Phys Chem C 115:16012–16018. doi: 10.1021/jp203381h CrossRefGoogle Scholar
  17. 17.
    Jiang N, Burri A, Park SE (2016) Ethylbenzene to styrene over ZrO\(_{2}\)-based mixed metal oxide catalysts with CO\(_{2}\) as soft oxidant. Chin J Catal 37:3–15. doi: 10.1016/S1872-2067(15)60901-9 CrossRefGoogle Scholar
  18. 18.
    Jomard G, Petit T, Pasturel A, Magaud L, Kresse G, Hafner J (1999) First-principles calculations to describe zirconia pseudopolymorphs. Phys Rev B 59:4044–4052. doi: 10.1103/PhysRevB.59.4044 CrossRefGoogle Scholar
  19. 19.
    Korhonen ST, Catalayud M, Krause AOI (2008) Stability of hydroxylated (\({\overline{1}}11\)) and (\({\overline{1}}01\)) surfaces of monoclinic zirconia: a combined study by DFT and infrared spectroscopy. J Phys Chem C 112:6469–6476. doi: 10.1021/jp8008546 CrossRefGoogle Scholar
  20. 20.
    Kouva S, Andersin J, Honkala K, Lehtonen J, Lefferts L, Kanervo J (2014) Water and carbon oxides on monoclinic zirconia: experimental and computational insights. Phys Chem Chem Phys 16:20650–20664. doi: 10.1039/c4cp02742f CrossRefGoogle Scholar
  21. 21.
    Kouva S, Honkala K, Lefferts L, Kanervo J (2015) Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol 5:3473–3490. doi: 10.1039/C5CY00330J CrossRefGoogle Scholar
  22. 22.
    Liu T, Zhang X, Yuan L, Yu J (2015) A review of high-temperature electrochemical sensors based on stabilized zirconia. Solid State Ion 283:91–102. doi: 10.1016/j.ssi.2015.10.012 CrossRefGoogle Scholar
  23. 23.
    McCullough JD, Trueblood KN (1959) The crystal structure of baddeleyite (monoclinic ZrO\(_{2}\)). Acta Crystallogr 12:507–511. doi: 10.1107/S0365110X59001530 CrossRefGoogle Scholar
  24. 24.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71(035):109. doi: 10.1103/PhysRevB.71.035109 Google Scholar
  25. 25.
    Nahar G, Duport V (2014) Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: review. Renew Sustain Energy Rev 32:777–796. doi: 10.1016/j.rser.2013.12.040 CrossRefGoogle Scholar
  26. 26.
    Pacchioni G (2014) Ketonization of carboxylic acids in biomass conversion over TiO\(_{2}\) and ZrO\(_{2}\) surfaces: a DFT perspective. ACS Catal 4:2874–2888. doi: 10.1021/cs500791w CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396. doi: 10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  29. 29.
    Pintos DG, Juan A, Irigoyen B (2012) Oxygen vacancy formation on the Ni/Ce\(_{0.75}\)Zr\(_{0.25}\)O\(_2\) (111) surface. A DFT+U study. Int J Hydrog Energy 37:14937–14944. doi: 10.1016/j.ijhydene.2011.12.079 CrossRefGoogle Scholar
  30. 30.
    Piskorz W, Grybos J, Zasada F, Cristol S, Paul JF, Adamski A, Sojka Z (2011) Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO\(_{2}\) nanocrystals. J Phys Chem C 115:24274–24286CrossRefGoogle Scholar
  31. 31.
    Piskorz W, Grybos J, Zasada F, Zapala P, Cristol S, Paul JF, Sojka Z (2012) Periodic DFT study of the tetragonal ZrO\(_{2}\) nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J Phys Chem C 116:19307–19320. doi: 10.1021/jp3050059 CrossRefGoogle Scholar
  32. 32.
    Prakash BS, Kumar SS, Aruna ST (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sustain Energy Rev 36:149–179. doi: 10.1016/j.rser.2014.04.043 CrossRefGoogle Scholar
  33. 33.
    Raz S, Sasaki K, Maier J, Riess I (2001) Characterization of adsorbed water layers on Y\(_{2}\)O\(_{3}\)-doped ZrO\(_{2}\). Solid State Ion 143:181–204. doi: 10.1016/S0167-2738(01)00826-8 CrossRefGoogle Scholar
  34. 34.
    Reuter K, Scheffler M (2001) Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO\(_{2}\) (110). Surf Sci 490:20–28. doi: 10.1016/S0039-6028(01)01214-6 CrossRefGoogle Scholar
  35. 35.
    Reuter K, Scheffler M (2002) Composition, structure, and stability of RuO\(_{2}\) (110) as a function of oxygen pressure. Phys Rev B 65(035):406. doi: 10.1103/PhysRevB.65.035406 Google Scholar
  36. 36.
    Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev B 90(046):103. doi: 10.1103/PhysRevLett.90.046103 Google Scholar
  37. 37.
    Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl Catal B 61:130–139. doi: 10.1016/j.apcatb.2005.04.015 CrossRefGoogle Scholar
  38. 38.
    Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291. doi: 10.1051/epjap:2004206 CrossRefGoogle Scholar
  39. 39.
    Sangalli D, Lamperti A, Cianci E, Ciprian R, Perego M, Debernardi A (2013) Role of oxygen vacancies on the structure and density of states of iron-doped zirconia. Phys Rev B 87(085):206. doi: 10.1103/PhysRevB.87.085206 Google Scholar
  40. 40.
    Syzgantseva OA, Calatayud M, Minot C (2012) Revealing the surface reactivity of zirconia by periodic DFT calculations. J Phys Chem C 116:6636–6644. doi: 10.1021/jp209898q CrossRefGoogle Scholar
  41. 41.
    Wang H, Li G, Xue Y, Li L (2007) Hydrated surface structure and its impacts on the stabilization of \(t\)-ZrO\(_{2}\). J Solid State Chem 180:2790–2797. doi: 10.1016/j.jssc.2007.08.015 CrossRefGoogle Scholar
  42. 42.
    Yashima M, Hirose T, Katano S, Suzuki Y, Kakihana M, Yoshimura M (1995) Structural changes of ZrO\(_{2}\)–CeO\(_{2}\) solid solutions around the monoclinic–tetragonal phase boundary. Phys Rev B 51:8018–8025. doi: 10.1103/PhysRevB.51.8018 CrossRefGoogle Scholar
  43. 43.
    Youssef M, Yildiz B (2012) Intrinsic point-defect equilibria in tetragonal ZrO\(_{2}{\text{: }}\) density functional theory analysis with finite-temperature effects. Phys Rev B 86(114):109. doi: 10.1103/PhysRevB.86.144109 Google Scholar
  44. 44.
    Zhu J, van Ommen JG, Lefferts L (2006) Effect of surface OH groups on catalytic performance of yttrium-stabilized ZrO\(_{2}\) in partial oxidation of CH\(_{4}\) to syngas. Catal Today 117:163–167. doi: 10.1016/j.cattod.2006.05.046 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanoscience Center, Department of ChemistryUniversity of JyväskyläJyväskyläFinland

Personalised recommendations