Advertisement

Topics in Catalysis

, Volume 59, Issue 19–20, pp 1740–1747 | Cite as

Atomic-Resolution HAADF-STEM Study of Ag/Al2O3 Catalysts for Borrowing-Hydrogen and Acceptorless Dehydrogenative Coupling Reactions of Alcohols

  • Kenta Yoshida
  • Kenichi Kon
  • Ken-ichi ShimizuEmail author
Original Paper

Abstract

We study HAADF-STEM analysis of Ag/Al2O3 samples (as-calcined and reduced at 25, 300, 500 and 900 °C). Ag atoms are classified into subnanoclusters (0.3–1 nm), nanoclusters (1–3 nm), nanoparticles (3–10 nm) and polycrystals (>10 nm). The size of Ag increases with the reduction temperature, which is supported by EXAFS analysis. The effect of Ag size on the activity for borrowing-hydrogen and acceptorless dehydrogenative couplings of alcohols is discussed.

Keywords

HAADF-STEM C–C bond formation Hydrogen transfer Silver 

Notes

Acknowledgments

This work was supported by Grant-in-Aids for Scientific Research B (26289299) from MEXT (Japan), a MEXT program “Elements Strategy Initiative to Form Core Research Center” and a Grant-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” (25106010) from JSPS.

References

  1. 1.
    Gunanathan C, Milstein D (2013) Science 341:1229712CrossRefGoogle Scholar
  2. 2.
    Fujita K, Yamaguchi R (2005) Synlett 4:560–571Google Scholar
  3. 3.
    Obora Y (2014) ACS Catal 4:3972–3981CrossRefGoogle Scholar
  4. 4.
    Shimizu K (2015) Catal Sci Technol 5:1412–1427CrossRefGoogle Scholar
  5. 5.
    Shimizu K, Sugino K, Satsuma A (2009) Chem Eur J 15:2341–2351CrossRefGoogle Scholar
  6. 6.
    Shimizu K, Ohshima K, Satsuma A (2009) Chem Eur J 15:9977–9980CrossRefGoogle Scholar
  7. 7.
    Shimizu K, Sato R, Satsuma A (2009) Angew Chem Int Ed 48:3982–3986CrossRefGoogle Scholar
  8. 8.
    Shimizu K, Nishimura M, Satsuma A (2009) ChemCatChem 1:497–503CrossRefGoogle Scholar
  9. 9.
    Shimizu K, Sawabe K, Satsuma A (2009) Catal Sci Technol 1:331–341CrossRefGoogle Scholar
  10. 10.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211–220CrossRefGoogle Scholar
  11. 11.
    Arve K, Svennerberg K, Klingstedt F, Eränen K, Wallenberg LR, Bovin JO, Čapek L, Murzin DY (2006) J Phys Chem B 110:420–427CrossRefGoogle Scholar
  12. 12.
    Kannisto H, Arve K, Pingel T, Hellman A, Härelind H, Eränen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644–653CrossRefGoogle Scholar
  13. 13.
    Shimizu K, Miyamoto Y, Satsuma A (2010) J Catal 270:86–94CrossRefGoogle Scholar
  14. 14.
    Su DS, Zhang B, Schlögl R (2015) Chem Rev 115:2818–2882CrossRefGoogle Scholar
  15. 15.
    Sohlberg K, Pennycook TJ, Zhou W, Pennycook SJ (2015) Phys Chem Chem Phys 17:3982–4006CrossRefGoogle Scholar
  16. 16.
    Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem Res 46:1740–1748CrossRefGoogle Scholar
  17. 17.
    Zhang B, Zhang W, Su DS (2011) ChemCatChem 3:965–968CrossRefGoogle Scholar
  18. 18.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335CrossRefGoogle Scholar
  19. 19.
    Pennycook SJ, Jesson DE (1991) Ultramicroscope 37:14–37CrossRefGoogle Scholar
  20. 20.
    Boyes ED, Ward MR, Lari L, Gai PL (2013) Ann Phys (Berlin) 525:423–429CrossRefGoogle Scholar
  21. 21.
    Yamamoto Y, Arai S, Esdaki A, Ohyama J, Satsuma A, Tanaka N (2014) Microscopy 63:209–218CrossRefGoogle Scholar
  22. 22.
    Batson PE (2008) Microsc Microanal 14:89–97CrossRefGoogle Scholar
  23. 23.
    Yoshida K, Tominaga T, Hanatani T, Tagami A, Sasaki Y, Yamasaki J, Saitoh K, Tanaka N (2013) Microscope 62:571–582CrossRefGoogle Scholar
  24. 24.
    Yoshida K, Bright A, Tanaka N (2012) J Electron Microsc 61:99–103CrossRefGoogle Scholar
  25. 25.
    Yoshida K, Zhang X, Bright AN, Saitoh K, Tanaka N (2013) Nanotechnology 24:065705CrossRefGoogle Scholar
  26. 26.
    Adrian M, Dubochet J, Lepault J, Mcdowall AW (1998) Nature 308:32–36CrossRefGoogle Scholar
  27. 27.
    Sueda S, Yoshida K, Tanaka N (2010) Ultramicroscope 110:1120–1127CrossRefGoogle Scholar
  28. 28.
    Hernandez-Garrido Yoshida K, Gai PL, Boyes ED, Christensen CH, Midgley PA (2011) Catal Today 160:165–169CrossRefGoogle Scholar
  29. 29.
    Yoshida K, Makihara M, Tanaka N, Aoyagi S, Nishibori E, Sakata M, Boyes ED, Gai PL (2011) Microsc Microanal 17:264–273CrossRefGoogle Scholar
  30. 30.
    Yoshida K, Ikuhara YH, Takahashi S, Hirayama T, Saito T, Sueda S, Tanaka N, Gai PL (2009) Nanotechnology 20:315703CrossRefGoogle Scholar
  31. 31.
    Shimizu K, Sugino K, Kato K, Yokota S, Okumura K, Satsuma A (2007) J Phys Chem C 111:1683–1688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.International Research Center for Nuclear Materials Science, Institute for Materials ResearchTohoku UniversityOaraiJapan
  2. 2.Institute for CatalysisHokkaido UniversitySapporoJapan
  3. 3.Elements Strategy Initiative for Catalysts and BatteriesKyoto UniversityKyotoJapan

Personalised recommendations